中瑞零碳建筑项目

技术报告

绿化和光伏

瑞士经验

中文版

2024年8月

本报告系在中瑞零碳建筑项目框架下编制。该项目由瑞士发展与合作署资助,并与中华人民共和国住房和城乡建设部合作实施,旨在推动国际合作与交流。

作者:

Gianrico Settembrini | 瑞士卢塞恩应用科学与艺术大学 (HSLU)

内容贡献与审阅人员:

路枫博士、Roland Stulz、朱继龙 | 瑞士茵态 (intep) 综合规划咨询有限公司 Wesley Wojtas | 瑞士Skat 咨询公司 张时聪博士、杨芯岩博士 | CABR

设计与排版:

Intep-Skat 联合团队

引用格式:

Settembrini, G. 绿化和光伏-瑞士经验介绍:《中瑞零碳建筑项目技术报告》[R]. 苏黎世: Intep-Skat, 2024.

中瑞零碳建筑项目是由瑞士发展与合作署资助,并与中华人民共和国住房和城乡建设部合作开展的国际合作项目。该项目旨在通过分享瑞士在可持续及零碳建筑领域的先进经验,推动减少温室气体排放,助力中国建筑行业实现碳中和发展。

项目实施团队:

瑞士茵态 (intep) 综合规划咨询有限公司 瑞士Skat 咨询公司 中国建筑科学研究院

微信公众号:

SinoSwissZEB

网站:

zeb-china.org

封面图片: 瑞士埃门塔尔地区阿福尔滕的格拉瑟之家(版权所有: Swiss BIPV Competence Centre)

目录

1.

2.

3.

4.

2.

中瑞零碳建筑项目背景

瑞士的低温能源网络应用

绿化+光伏——建筑围护结构的潜力

低碳未来:低温能源网络助力在建筑行业转型中

低温能源网络

目录			
1.	中瑞零碳建筑项目背景		2

2

3 6

7

3

1. 中瑞零碳建筑项目背景

1.1. 关于中瑞零碳建筑项目

为了共同应对全球气候变化,加强中瑞两国在建筑行业在减排领域的合作,2020年11月24日,中华人民共和国住房和城乡建设部与瑞士联邦外交事务部签署了在建筑节能领域发展合作的谅解备忘录。在此备忘录框架下,瑞士发展合作署(SDC)发起并资助了中瑞零碳建筑项目,旨在通过引入瑞士的经验和技术,支持中国制定零碳建筑技术标准和建筑行业中长期碳减排路线图,并在不同气候区建设零碳建筑示范工程,同时开展多种形式的能力建设活动,最终推动中国建筑行业的碳中和发展。

项目目标

- 将现有建筑能效标准升级至零碳建筑技术标准
- 在中国四个典型气候区实施示范工程,以测试新的零碳建筑标准并寻找优化潜力
- 开展零碳建筑设计能力建设以及相关的知识传播工作

项目起止时间

2021年3月15日至2025年11月30日

项目对气候保护的影响

项目旨在减少建筑领域二氧化碳排放

2. 绿化+光伏——建筑围护结构的潜力

2.1. 总结概览

我们总结出如下关键点:

- 外立面上的绿化设计和光伏设计仅在极少数情况下会出现竞争问题。在大多数情况下,两者均可在建筑外立面完全不同的区域实现各自的最大效益价值。
- · 光伏板应主要设计安装在发电潜力较高的区域,即朝南、朝东和朝西的外立面,且无遮挡。
- 绿色植被可以设计在靠近人们活动和停留的区域,实现其最大的效益和价值,并提高居住质量(例如减少噪音和空气污染、减缓热岛效应、提高户外空间吸引力等),特别是在城市地区。
- 具体项目的设计决策取决于多种因素:
- - 实际需求:噪音、气候、生物多样性、空气质量、能源结构(优先本地消纳)......
- - 定性和定量的优先等级
- - 场地分析:朝向、遮阳、楼层、风向、季节差异
- - 系统边界:社会经济效益评估,即谁会在在短期和长期内直接和间接受益?
- · 不同系统的组合可以结合两者各自的定性优势 和定量优势,在生态性和经济性上值得推荐。
- 相关法规和补贴资金(当地政府的责任)将直接 决定绿化系统和光伏系统的接受度和实际用量, 特别需要政府在消防规范方面对于光伏系统和绿 化系统做出明确清晰的规定和要求。
- 两种系统都可在应对未来问题上(例如缓解冬季电力短缺和创造宜居的高密度城市)做出重要贡献,面向未来的可复制的优秀范例可以促进相关专业知识的传播,并建立其社会共识。
- 在整体规划设计的不断优化过程中,除了外立面以外,还应评估建筑屋顶和周边场地的绿化设计和光伏设计,更有效地统合不同系统的优势,发挥联动协同作用。

2.2. 光伏系统

2.2.1. 优势

安全可靠的能源供应

将太阳能转化为电能或者热能,并直接在直接在现场消纳使用,可降低消费者对能源价格波动的敏感度和依赖性。设计一套优先自产自耗的能源系统可提供能源供应的安全性。通过外立面光伏发电系统可获

得更大的能源自主权,特别是在发电量较低和用电紧 张的时间段。

可持续的发电系统

太阳能资源属于可再生资源,利用光能发电可减少环境污染,因此光伏外立面可促进可再生能源电力的发展和生产。

瑞士能源部发表的战略规划《能源展望2050+》分析了瑞士能源系统的发展方向,以确保2050年实现温室气体净零排放,并提供安全可靠的能源供应。该文件建议在瑞士快速大规模扩张可再生能源的应用,其中针对光伏立面提出的目标是在未来 30 年内将光伏装机容量增加13倍。

图1 MFH Brütten © 3S Swiss Solat Solution

无需增加额外空间

建筑立面光伏的一大优点是不需要占用额外的建筑可用面积,光伏系统可以安装在建筑屋顶和建筑外立面上,宝贵的土地资源(未开发的土地和地面空间)可以用于其他用途,例如公园和社区活动场所。

长期经济优势

光伏系统是一项可持续投资,并具有可观的回报潜力。通过自用太阳能电力(本地消纳)而节省的成本,以及反向输入电网而获得的补偿报酬,光伏系统可以快速收回成本。只要能高效率地合理利用光伏组件,能源成本会立即降低,并且初始投资成本可在光伏板使用寿命内收回。光伏系统还可增加房产价值,带来更高的租赁收益,并减少空置率。

无噪音、无污染的发电系统

光伏系统能够在不产生任何噪音或污染的情况

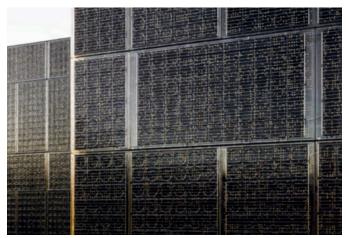


图2 AUE Basel © Daisuke Hirabayashi jessenvollenweider

下生产电力,这意味着光伏系统可在靠近人群的周边范围内运行使用,而不会对其生活质量产生负面影响。

全生命周期生态性和可回收性

诚然,光伏组件在生产阶段需要消耗大量的隐含能耗,然而投入使用后源源不断生产的清洁电力,可以大大节省建筑物在运营阶段的运营能耗。总体而言,使用合理、发电效率良好的光伏组件可在整个生命周期内减低整体碳排放,积极的生态平衡。光伏组件还具有很高的回收潜力,超过75%1的材料可以重复使用。而且在瑞士,通过实行光伏组件的预付回收费(ARF)制度保证在到使用寿命后仍能得到有效的回收和处理。

低廉的维护成本

由于光伏系统没有活动构件,除了定期清洁几乎无需日常维护,因此与传统发电设备(燃煤发电或燃

图3 瑞士Emmental Affoltern的文保建筑Glasermeister 修复改造项目将原有的瓦屋面改为光伏屋面 © Christoph Heilig

气发电)相比,维护成本非常低,使用寿命长达 30-40 年,只有逆变器被视为易损件,大约每15年必须更换一次。

建筑设计工具

如今光伏组件在设计上的选择范围非常宽泛(颜色、纹理、图案、透明度等),可以作为建筑设计的设计元素,帮助建筑师在城市设计和室外空间设计中发挥更重要的作用。因此,光伏系统在创造高质量的户外可停留空间上具有巨大潜力。

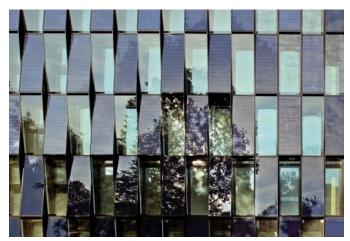


图4 德国门兴格莱德巴赫教育综合楼NEW Blauhaus将光伏立面板与幕墙设计相结合© Robert Mehl / kadawit-

2.2.2. 劣势

发电量波动

光伏系统的发电量受时间、季节和天气影响而产生波动,在阳光不足的情况下会导致发电量不足,增加对传统电网的依赖度。

投资成本高

尽管光伏系统价格不断下降,但初始投资成本仍 然较高,然而这些初期投入可以通过运营成本的下降 节省出来,逐渐摊销并甚至盈利。

性能衰减

随着时间的推移,光伏组件的性能会下降(衰减),发电量每年减少约0.4%,具体衰减值因光伏模块的不同而有所差异。

阴影遮挡和空间限制

图5 应避免光伏组件受到阴影的影响降低发电效率 Kingsgate House, London / P. Bonomo

邻近建筑或周边景观产生的不利的朝向和阴影 遮挡会导致发电量显着减少,甚至导致其无法盈利。 因此,并非所有的建筑外表面都适合于光伏利用,此 外,建筑屋顶和/或建筑外立面的可用面积有限。

依赖上网电价

如果富余的电力被并入电网吸纳,那么光伏系统的盈利能力和摊销周期则取决于当前的并网电价补贴,因此应尽量提高本地消纳的比例,从而提高经济利益。

定期清洁

光伏系统应定期清洁(大约每年一次),以避免因 灰尘污染导致发电量下降。

图6 光伏组件的表面灰尘会降低发电量,建议定期清洁 © AdobeStock

2.2.3. 光伏系统比较

屋顶光伏

优势:

- 年发电量更高
- · 适用于对屋顶美观度要求较低的建筑,可使用标准化模块(成本更低,效率更高)
- 更适用于平屋顶,因其更易于维护和清洁
- 相较于立面光伏系统,屋顶光伏和屋顶绿化的结合更易实现
- · 与高层建筑的光伏立面相比,屋顶光伏的消防问题更少

劣势:

- 有遭受冰雹损坏的风险
- 水平安装或斜面安装的屋顶光伏系统都容易遭受空气污染(灰尘沉积、黑碳积累)
- 可用空间有限,尤其是高层建筑
- 如果建筑屋顶用于安装光伏系统,那么其他用途将无法实现或只能有限实现:例如屋顶花园或屋顶露台等功能

立面光伏

优势:

- 冬季发电量更大:在冬季,对于没有阴影遮挡的南立面光伏系统,其发电量大于屋顶光伏系统
- · 通过合理布置,与屋顶系统相比,立面光伏系统每日和每年的逐时发电量更加均衡稳定,波动更小
- · 立面光伏板更少受到空气污染,且冬季不会积雪
- · 立面光伏的普及潜力更大(建筑的立面面积通常 来说远大于屋顶面积)
- · 光伏立面通常采用干挂通风式外墙构造体系,光 伏板直接作为最外侧的饰面层,替代原有的饰面层,降低其增量成本
- · 无需占用额外的建筑空间和面积

劣势:

- 单位面积的年发电量较低
- 投资成本普遍偏高
- 清洁和维护:高层建筑外立面清洁维护特别困难,必须在规划设计时予以考虑(需预留幕墙清洁设备和升降平台的空间)
- 目前仍然缺乏统一的光伏外立面消防法规,需要 邀请防火顾问专门论证针对单栋建筑定制的特殊 消防防火方案

2.3. 绿色系统

2.3.1. 优势

减少噪音

绿化植物的结构化表面具有高度的吸音能力,阻止噪音进一步反射至周边环境中,从而减少噪音污染,尤其对于城市区域价值显著。

改善空气质量

绿化可以帮助改善空气质量,尤其是对城市地区的多种污染源(建筑工地、交通污染等)的改善效果显著。绿色植物可以有效减少灰尘颗粒物、二氧化氮和二氧化硫,并吸收二氧化碳和臭氧产生氧气。

促进生物多样性

绿化可以创造新的生物栖息地,并对生物多样性做出积极贡献。城市中的绿色空间可通过绿色植被互相连接(例如绿化带、绿色走廊),或作为栖息地之间桥梁式的生态走廊。

提高空间停留质量

绿色空间对于城市生活质量至关重要,这种积极 影响既是身体上的,也是心理上的。绿色空间可以减 轻压力、促进健康、提高生产力和创造力,也作为社交 聚会场所,还能并促进体育锻炼和户外活动。

图7城市绿色空间 @ AdobeStock

雨水回收管理

绿化可以通过土壤基质和植物根系吸收雨水(渗透),随后蒸发逐渐释放回大气中。这不仅对环境有冷却作用(蒸发冷却),还有助于减轻污水管网负担。

夏季隔热与冬季采暖

夏季隔热变得越发重要,尤其是在气候变暖时

期。绿色植物可作为天然遮阳(植物遮阴作用),落叶植物在冬季落叶后,建筑物可获得更多的太阳热辐射,提供自然采暖的效果。

蒸发降温

绿色植物通过蒸发作用释放其吸收的空气水分, 因此具有降温作用。不仅有助于改善城市微气候,减 轻城市热岛效应,也有助于室内空间在夜间更高效地 降温。

图8 Bosco Verticale © Claudia Luperto / Strut Architekten

长期经济优势

绿色屋顶、建筑外立面和户外空间不仅可以在气候变暖的危机中对可持续发展做出重大贡献,还可以显着增加房产的市场价值和吸引力。充满绿意的工作和生活场所可以提高员工工作兴趣和租户生活体验,提高出租率和租赁稳定性,带来长远的经济效益。

2.3.2. 劣势

定期维护

图9 绿色屋顶植被 © AdobeStock

ZEB

绿化需要定期进行维护,以保证其美观和安全。 例如,立面垂直绿化必须避免植物过度生长,以降低 火灾时火焰蔓延的危险。城市树木需要及时剪枝,防 止枯枝掉落砸伤路人或车辆。

绿化的潜力受生长季节的影响

植物需要时间来生长发育,只有经过一定的时间绿化才能充分发挥其潜力。根据生态系统和植物种类的不同,可能需要数年甚至数十年的时间。因此在设计和施工中应尽可能保留既有的绿地、植被和树木。

图10 绿化需要定期维护 © AdobeStock (links), newhome, Jürg Zulliger (rechts)

2.4. 绿化系统比较

屋顶绿化

优势:

- 由于屋顶覆土厚度深体积大,可以很好地吸收雨水
- · 增强屋顶的保温隔热性能(更低的热传导系数U

图11 城市公园 © AdobeStock

值)

- 有效抵御气候影响并降低温差波动,有助于延长 屋顶的使用寿命
- 自然空间的再平衡:建筑物会侵占部分自然地形,可通过绿化屋顶表面重新恢复这部分自然空间
- 平屋顶易干维护和保养
- 屋顶绿化和光伏的结合很容易在屋顶上实施(利用协同效应)

劣势:

- · 投资成本高于传统屋顶(增量成本多少因屋顶绿 化类型而异)
- 额外增加荷载重量,对于改造项目而言需要进行 结构论证或结构加固(可能会增加隐含碳排放的 成本)
- · 密集型屋顶绿化(精绿化)需要配备额外的灌溉系统;开敞型屋顶绿化(粗绿化)通常无需灌溉系统
- · 屋顶绿化易受外来植物的物种入侵,尤其在初期阶段,另外也可能生长出木本植物(如小灌木或树木)破坏屋顶结构,因此需要定期维护和检查,及时清除这些不必要的植物,防止其对屋顶结构造成损害
- 植物根系的生长可能会损坏屋顶防水层,维修复杂且昂贵,需要进行定期检查预防

立面绿化

优势:

- 占地空间少
- 固定于建筑外墙的壁挂式垂直绿化无需接触地面土壤
- 增强墙体的保温隔热性能(更低的热传导系数U 值)
- 有效抵御气候影响并降低温差波动,有助于延长 外墙结构的使用寿命
- · 立面绿化可作为建筑立面的设计元素(多样的设计选择,并对建筑空间和城市空间带来积极影响)

劣势:

- 固定于建筑外墙的壁挂式垂直绿化投资成本较高
- · 对于高层建筑而言,立面绿化的维护和保养成本高昂,并且需要规划建造相应的升降平台用于绿化维护工作
- 可能需要进行结构加固(增加隐含碳排放)
- 壁挂式垂直绿化系统对水和养分的要求较高

- 扎根于地面土壤的攀爬植物可能损坏立面(需要定期维护和监控)
- 立面绿化系统总体而言尚未普及,缺乏系统性的经验并充满不确定性(设计、实施、维护)

户外空间绿化(树木和绿地)

优势:

- 城市公园等便于人们方便到达的绿地可作为当地户外休闲区域
- 乔木、灌木和草坪的搭配和组合可提高各类生物 栖息地的多样性
- · 高密多样的生态系统:树木提供遮荫,透水地面 保证雨水渗透
- 良好的可达性,便于维护和保养
- 一般不需要额外的灌溉系统

劣势:

- · 占地空间较大,尤其在城市地区用地资源紧张的 情况下
- · 绿色植物可能面临有害因素的影响,例如冬季撒盐融雪的盐分沉积和宠物排泄物(如狗尿)引起的植物灼烧

2.5. 上述绿化系统的选择建议

2.5.1. 项目场地是核心因素

项目场地的地理位置、环境特征、气候条件等是设计和实施过程中必须考虑的重要因素,虽然无法改变,但可以通过合理的设计和规划来适应和利用。因此,外立面设计必须适应既有环境,这对于项目整体的系统能效至关重要。在分析场地时,必须结合多方面因素综合评估建筑外立面表面的设计潜力,包括阴影、噪音、气候、现有绿地等。对于新建项目,可通过使用不透明、透明、绿化和光伏板作为立面最终完成面来优化并完善其外立面设计。对于更新项目,应重点关注既有外立面的潜力。

2.5.2. 早期阶段的专业人员参与

应在早期设计规划阶段,应咨询立面绿化和立面 光伏的相关专家意见,并让他们参与设计决策过程。 这样可以获取关于能效、结构、消防、维护保养、空间 需求和可达性等方面的重要信息,并厘清各种实施系 统的可能性。顾问专家还可在选择合适的外立面系统 时提供技术支持,综合考虑既定的项目任务和目标, 并指出典型的潜在"绊脚石"风险。顾问专家的早期参与也是保证预算规划和经济效益的关键因素(例如,采用标准尺寸的光伏板降低造价,或者选择合适的植物类型作为外立面绿化)。此外,必须从一开始就考虑与其他专业和工种的协调配合,例如向给排水专业提出绿化用水方面的设计要求。

2.5.3. 明确项目目标

项目立项阶段,应与项目业主一起明确定义项目目标。首先应向业主展示不同外立面系统的优缺点(提升业主意识和敏感性),讨论立面绿化和立面光伏在社会、经济和环境方面的附加值,并共同决定选择哪种系统,权衡是在建筑屋顶,在建筑立面,还是在周边场地中布置绿化和光伏(建筑立面、建筑屋顶、周边场地三者当中哪个更合理?)。需要综合考虑其优缺点并明确整体性的可持续概念设计(生态可持续、经济可持续和社会可持续)。

图12 绿色空间和自然元素对城市生活的质量至关重要 ©AdobeStock

2.5.4. 不同楼层的立面设计

项目周边环境(例如邻近建筑物、山体、树木等)直接影响光伏组件的使用,因为这些因素可能产生阴影,从而降低光伏模块的发电效率。因此,光伏组件应主要用于不受阴影影响的外立面上。即使阴影对外立面绿化影响不大,但为了实现更高价值,也必须根据楼层进行立面设计和规划:

- · 减少噪音:在靠近噪音源的位置采取降噪措施, 尤其是在城市地区(交通噪音、施工噪音等)
- · 改善空气质量:在靠近空气污染源的位置采取净化措施,较低的楼层(高度 < 4.5m)的潜力最大
- 减少热辐射:高密度的植物种植可以增强绿化的 冷却效果(蒸发冷却)

- 雨水回收:考虑到气候因素,瑞士西部地区的潜力最大
- · 促进生物多样性:城市地区的绿地通常是分散布置的,立面绿化可成为连接性要素(形成"绿化带、绿色走廊"),这方面通常是较低的楼层潜力最大
- · 提高停留性空间的质量:在城市这种随着密度增加而绿地稀少的地方,较低的楼层更靠近人们的活动空间,因此潜力最大。

2.5.5. 低技和高技

在外立面设计中,可同时考虑「低技方案」和「高技方案」并保证两者互补有效。低技解决方案通常具有更强的适应性和耐用性,以及更低的故障率,在维护和运营方面的要求较低,也通常对材料的需求较少,从而在整体系统的全生命周期评估上优势更大。低技的设计方法和策略的经济优势和生态优势更强,因此应当应优先考虑使用「低技方案」。然而,在自动化和能源管理(能源存储、负载管理等......)方面,与高科技组件的结合可以显着优化整体系统。在规划设计中,需要综合考虑在哪些地方采用哪种系统才能更加合理有效。

2.5.6. 系统的组合

绿化和光伏得结合可以发挥出协同效应和互补优势。例如,绿化的冷却效果(蒸发冷却)可以提高光伏组件的能效。此外,系统的组合可以带来许多设计方面的优势,并对建筑美学和室外空间的美观产生积极影响。

2.5.7. 合理使用光伏组件

基于生态方面和经济方面的考量,应合理使用光伏组件,保证安装建设成本(隐含能耗和隐含碳排放)和初始投资成本能够得到快速摊销并回收成本。这里的决定性因素主要包括朝向(南立面、东立面、西立面)和影响外立面的阴影。此外,在规划设计光伏外立面时,还可以综合考虑建筑物的实际运行时间和未来发展的趋势(例如,未来随着电动汽车、热泵设备等更加普及,将消耗更多电力)。

规划设计还应考虑以下因素:

- 建筑美学
- 成本效益比(不同于投资回报比,这里更强调包括生态、健康、经济、可持续等多方面的总体经济效应)

• 系统设计和系统选型:基于项目实际情况(冬季用电、整体平衡、自用电优先等)

2.5.8. 绿化:提升潜力

在规划设计外立面绿化时,植物选择和基质选择 可以有效增强各方面的积极效果,并提高系统耐久 性。

应注意以下事项:

- · 考虑未来气候变化及其气候条件(全球变暖趋势下的植物耐热性、应对极端天气的能力等)
- · 搭配不同植物种类以促进物种多样性(生物多样性)
- · 追求更高的绿化密度和更多的植物数量,这有助于吸收空气污染物、促进植物蒸发冷却和降低环境噪音影响
- · 大量的土壤基质可促进雨水回收(渗透蓄积),改善 善水循环,并缓解排水网络的压力
- 街道绿化和低楼层绿化可以创造出新的绿地空间,改善局部微气候,提高人们的幸福感,促进人体健康
- 植物种类的选择和绿化系统的选择也可作为更具潜力的设计工具,因为绿化可随时间和季节的变化而变化,形成更丰富的设计语言
- 建议及时与相关顾问专家进行交流

2.6. 不同系统的影响力

2.6.1. 定性影响和定量影响

本节展示了各种外立面系统在定性方面和定量 方面的影响,首先通过概述总览表总结了定性分析和 定量分析的相关结果,之后的篇幅将在各个方面展开 详述,并针对不同建筑楼层和建筑朝向进行具体评 估。

定性方面

- 城市噪音
- 空气质量
- 生物多样性
- 雨水回收
- 户外空间的吸引力

以上定性评估基于相关文献研究,并汇总各类研究的重要原则。

定量方面

- 室内舒适度:室内温度和过热时长
- 建筑运营:供暖能耗、制冷能耗和电力能耗
- 光伏立面发电量、太阳能用能潜力和季节性考虑
- 生产制造和建筑运营:全生命周期碳排放评估LCA
- 经济性考量:初始投资成本和全生命周期成本LCC
- 微气候:外立面表面温度及其对周边环境气候的影响

通过前期模拟计算和后期监测来评估进行定量方面的评估,总结各个不同方面的重要发现。所有的模拟成果或计算结果都基于假设的研究对象,即一栋八层高的新建建筑。

2.6.2. 评估成果

将不同的立面系统(立面光伏或立面绿化)与常规外立面系统(带通风层的纤维水泥板干挂式墙体构造系统)进行定性评估和定量评估,并进行比较。以参考建筑"新建建筑"(图14)为例,以图示的方式进行全方面评估,以便能够快速评估各类立面系统在不同朝向和楼层的潜力,并在图13中以不同颜色的标尺进行展示。

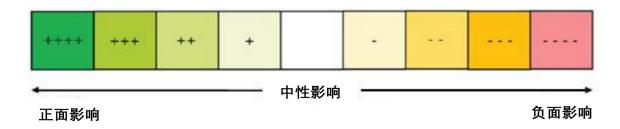


图13 不同颜色的标尺表示其评估结果的好坏

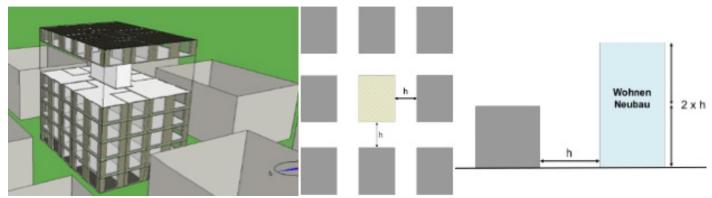


图14采用"新建建筑"作为参考建筑的计算机模型(左)、项目所处的虚拟城市环境(右)

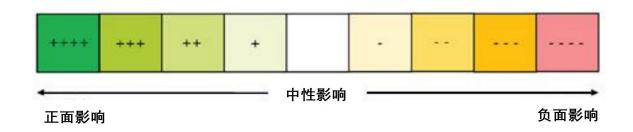
2.7. 总览表

绿化外墙立面 光伏立面									
定性方面:与参考立面(外挂式纤维水泥板,带通风层)进行比较评估	地生植物 (落叶 植物,生长高度 可达三层高)	墙面植物(常绿 植物,模块化系 统,覆盖整个立 面)	不透明	透明					
城市噪音: 降噪潜力基于交通繁忙的狭窄街道进行评估 (约80分贝, 噪音强烈)									
地面层	+++	++++	-	-					
二层	+++	++++	-	-					
三层	+++	++++	-	-					
四层	++	+++	无影响	无影响					
五层以上	无影响	++	无影响	无影响					
空气质量:净化潜力基于	交通繁忙的狭窄街道	並行评估							
地面层	+++	++++	无影响	无影响					
二层	++	+++	无影响	无影响					
三层	+	+	无影响	无影响					
四层	+	+	无影响	无影响					
五层以上	无影响	无影响	无影响	无影响					
生物多样性:针对促进新想			并考虑了光伏立面	可能导致的光线反					
地面层	+++	++++	-	-					
二层	+++	++++	-	-					
三层	+++	++++	-	•					
四层	+++	++++	-	•					
五层以上	无影响	++++	-	•					
雨水收集: 作为迎风面的	北面/西北面/西面的	绿化立面的潜力最	大 (基于瑞士气候)	条件)					
地面层	++++	++++	无影响	无影响					
二层	+++	++++	无影响	无影响					
三层	+++	++++	无影响	无影响					
四层	+++	++++	无影响	无影响					
五层以上	无影响	++++	无影响	无影响					
户外空间的吸引力: 针对	建筑立面在颜色、图	图案、透明度、开花	周期等方面的设计	潜力进行评估					
地面层	+++	++++	无影响	+					
二层	+++	++++	无影响	+					
三层	++	+++	无影响	+					
四层	++	+++	无影响	+					
五层以上	无影响	++	无影响	+					
+ 影响	力小 ++中等影响	力 +++影响力大	++++影响力极大						
	++++ 正面影响 负面影响								

定性方面: 与参考立面											
(外挂式纤维水泥板,	地生植物		墙面植物		不透	透明	透明				
带通风层) 进行比较评				10.00							
估	受遮挡	不受遮挡	受遮挡	不受遮挡	受遮挡	不受遮挡	受遮挡	不受遮挡			
室内热环境舒适度:温度过热的小时数——											
基于保温性能良好的新建	筑的评估数	据;在保温的	性能差的旧	建筑中影响和	程度可能更大	大					
北立面	+	+	+	+	无影响	无影响	无影响	无影响			
东立面	+	+	+	++	无影响	无影响	无影响	无影响			
南立面	+	+	+	++	无影响	无影响	无影响	无影响			
西立面	+	+	+	++	无影响	无影响	无影响	无影响			
建筑运营阶段: 采暖、制	冷和电力消	耗 —— 最大	潜力在东面	>南面>西面	>北面						
北立面	+	+	+	+	无影响	无影响	无影响	无影响			
东立面	+	+	+	+	无影响	无影响	无影响	无影响			
南立面	+	+	+	+	无影响	无影响	无影响	无影响			
西立面	+	+	+	+	无影响	无影响	无影响	无影响			
全年发电量潜力 —— 最大	潜力在屋顶	· i>东面>南面	 >西面>北面								
北立面	无影响	无影响	无影响	无影响	++	++	+	+			
东立面	无影响	无影响	无影响	无影响	++	+++	+	++			
南立面	无影响	无影响	无影响	无影响	++	++++	+	+++			
西立面	无影响	无影响	无影响	无影响	++	+++	+	++			
冬季发电量 —— 最大潜力)在南面立面	>屋顶>东面	/西面>北面								
北立面	无影响	无影响	无影响	无影响	+	+	+	+			
东立面	无影响	无影响	无影响	无影响	+	++	+	++			
南立面	无影响	无影响	无影响	无影响	+	++++	+	++++			
西立面	无影响	无影响	无影响	无影响	+	++	+	++			
建材生产阶段: 隐含温室	气体排放(GHG) ——									
与参考立面相比, 地面绿			因为所需建	材更多,因」	比建材生产	过程中产生的	勺碳排放更高	高			
北立面	-	-									
东立面	-	-									
南立面	-	-									
西立面	-	-									
	+ 影响力	小 ++ 中等	影响力 +-	++影响力大	++++影响	力极大					
		+++	+ 正面影响	负面影	∮响						

绿化外墙立面 光伏立面										
定性方面:与参考立面 (通风纤维水泥板)进行比	地生	植物	墙面	植物	不透明		透	明		
较评估	受遮挡	不受遮挡	受遮挡	不受遮挡	受遮挡	不受遮挡	受遮挡	不受遮挡		
建材生产和建筑运营:全生命周期评估 (LCC) —基于30年摊销期的温室气体排放量										
北立面	-	-				+		无影响		
东立面	-	-			++	++++	++	+++		
南立面	-	-			+++	++++	++	++++		
西立面					++	++++	+	+++		
投资成本: 对不同立面系统	进行比较,周		的投资成本	均高于参考式	2面系统					
北立面										
东立面	-	-								
南立面										
西立面	-	-								
全生命周期成本 (LCC) — i	投资,维护和]运营总成本	,包括30年》	观察期结束后	的剩余价值					
北立面					无影响	无影响				
东立面					无影响	+		-		
南立面					无影响	+		-		
西立面					无影响	+		-		
在温和晴朗天气作为测量条	 件,与参考:	立面相比的最	大偏差 (仅	测试了不受证	些挡的南立面)				
南立面	未测量	+++	未测量	+++	未测量		未测量	-		
对微气候的影响: 与炎热天	气条件下"生	理等效温度R	ET"的差异比	· 滋 (基于QK		· 概率模拟计	算)			
北立面	+	+	++	++	+	+	无影响	无影响		
东立面	+	++	++	+++	+	+	无影响	+		
南立面	+	++	++	++++	+	++	无影响	+		
西立面	+	++	++	+++	+	+	无影响	+		
	+ 影响力	小 ++中		++影响力大	++++影响	力极大				
		+++	+ 正面影响	负面影	响					

2.8. 定性因素的详细分析


2.8.1. 城市噪声

外立面系统的评估

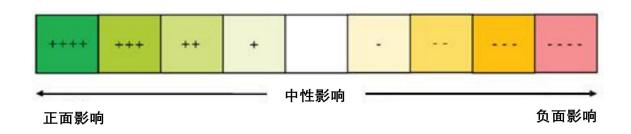
下图展示了各种外立面系统对城市噪声方面的影响,并以与周边建筑形成狭窄街道为例,与参照立面进行比较和说明。

"城市噪音"总结

- 1. 立面绿化能够有效减少城市噪声。
- 2. 光伏立面的表面质地坚硬且平滑,因此会在很大程度上反射声波。
- 3. 距离噪声源的远近至关重要:在距离噪声源较近的位置,绿化(通常在较低楼层)具有更好的降噪效果, 而光伏立面对噪音反射而产生的负面效应在远离噪声源的地方(通常在较高楼层)则更小。
- 4. 种植于地面表层土壤的植物种类通常是落叶植物,因此在冬季月份的减噪效果不太明显。
- 5. 如果选择常绿植物作为立面绿化(通常用于安装于墙面的种植系统),可以在全年都保持良好的减噪效果。

地面绿化 (落叶树, 可长高至3层楼高)	壁挂式 立面绿化 (四季绿植)	光伏立面 不透明模块	光伏立面 透明模块

图15 立面绿化和立面光伏对城市噪声的影响


2.8.2. 空气质量

外立面系统的评估

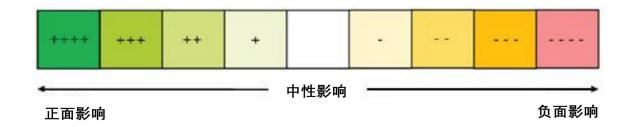
下图展示了各种外立面系统对空气质量方面的影响,并以与周边建筑形成狭窄街道为例,与参照立面进行比较和说明。

"空气质量"总结

- 1. 立面绿化可以有效改善空气质量。
- 2. 光伏立面虽然无法直接改善空气质量,但通过利用可持续能源(太阳能)大大降低二氧化碳排放量(间接改善空气质量)。
- 3. 距离空气污染源的远近至关重要:在狭窄街道中,尤其是在高度不超过4.5米的范围内,绿化能够有效降低空气污染。
- 4. 在狭窄的街道上,密集的行道树木可能导致树冠下空气污染物的积聚(空气流通受限)。在这种情况下, 立面绿化可能更为有效。
- 5. 落叶植物只有季节性的效果,而常绿植物(通常用于安装于墙面的绿化系统)则全年有效。

地面绿化 (落叶树, 可长高至3层楼高)	壁挂式 立面绿化 (四季绿植)	光伏立面 不透明模块	光伏立面 透明模块

图16 立面绿化和立面光伏对空气质量的影响


2.8.3. 生物多样性

外立面系统的评估

下图展示了各种外立面系统在生物多样性方面与参考立面的影响力比较。

"生物多样性"总结

- 1. 立面绿化可以有效促进生物多样性,尤其是在城市区域潜力巨大。
- 2. 光伏立面存在眩光的风险,可能会对鸟类等生物产生负面影响。
- 3. 光伏立面与绿化立面的结合使用可以创造出具有不同微气候条件的栖息地。
- 4. 落叶植物只有季节性的效果,而常绿植物(通常用于安装于墙面的绿化系统)则全年有效。
- 5. 生根于地面土壤的绿化系统在生长高度上受到限制,而墙面绿化系统通常可以用于不同高度。

地面绿化 (夏季绿植, 可长高至3层高)	壁挂式 墙面 绿化 (四季绿植)	光伏立面 不透明模块	光伏立面 透明模块

2.8.4. 雨水回收

外立面系统的评估

下图展示了各种外立面系统在'雨水回收'方面与参考立面的影响力比较。

"雨水回收"总结

- 1. 立面绿化可有效促进雨水回收,在迎风面(瑞士:北向/西北向)潜力巨大。
- 2. 虽然墙面绿化系统可以在整个外立面实现雨水回收,但对于植根于地面土壤的绿化系统来说,靠近地面的位置更利于雨水回收(土壤基质层对雨水渗透蓄积起决定性作用)
- 3. 光伏立面无法进行雨水回收

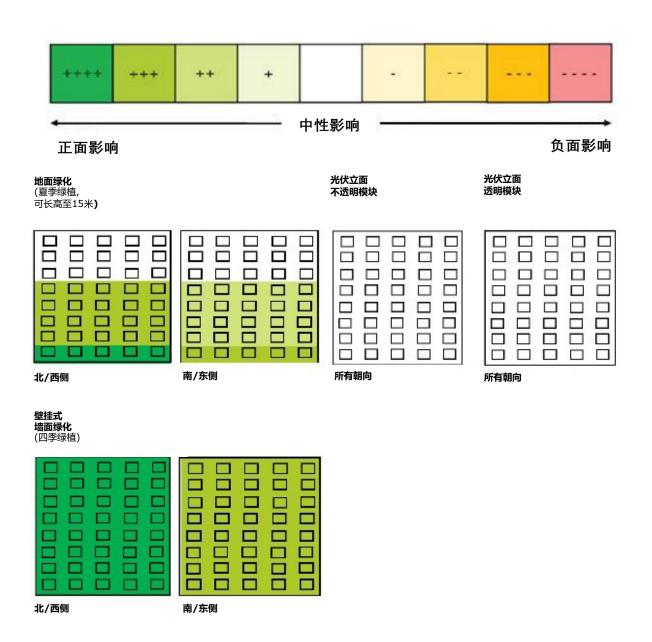
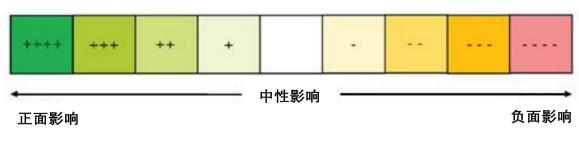


图18 立面绿化和立面光伏对雨水回收的影响


2.8.5. 户外空间的吸引力

外立面系统的评估

下图展示了各种外立面系统在"户外空间吸引力"方面与参考立面的影响力比较。

"户外空间吸引力"总结

- 1. 立面绿化在创造有吸引力的宜居户外空间方面潜力巨大。
- 2. 绿化空间在靠近人群活动的区域(通常在较低楼层)具有最大潜力。在立面绿化的实际上,可以根据不同楼层进行针对性的设计,并在不同层面上提供额外的设计价值(比如城市空间、建筑结构、外立面丰富性等)。
- 3. 光伏立面可作为建筑设计工具和设计元素,与传统立面材料(纤维水泥板)相比,不透明的光伏板有更多的颜色、纹样和图案可供选择。相比于传统的透明玻璃来说,透明的光伏板也有更多的设计选择(可自由选择透明度)。
- 4. 落叶植物的四季变化多样丰富,常绿植物则可以全年保持绿叶(立面外观基本保持不变)。植根于地面土壤的绿化系统在生长高度上受到限制。

地面绿化 (夏季绿植, 可长高至3层楼)	壁挂式 墙面绿化 (四季绿植)	光伏立面 不透明模块	光伏立面 透明模块

2.9. 定量因素的详细分析

2.9.1. 室内舒适度:室内温度和过热时长

下图展示了各种外立面系统在"室内舒适度"方面与参考立面的影响力比较。

"室内舒适度:室内温度和过热时长"总结

- 1. 立面绿化可以有效调节室内舒适度,即保持室内温度和减少过热时长,但对保温性能良好的新建建筑而言,其影响力较弱。
- 2. 墙面绿化通常比地面种植更有效,尤其在二楼及以上楼层的东向、南向和西向最为显著:因为邻近建筑的遮蔽较少,因此这些立面将受到更多太阳辐射。
- 3. 光伏立面暂无这方面的详细分析。虽然光伏模块的工作温度可能较高,但这对室内舒适度几乎没有影响,尤其在建筑外墙保温性能较好的情况下。

应该注意的是,(额外的)外墙保温比外立面绿化更能有效提升建筑的保温隔热性能,因此应当优先考虑。

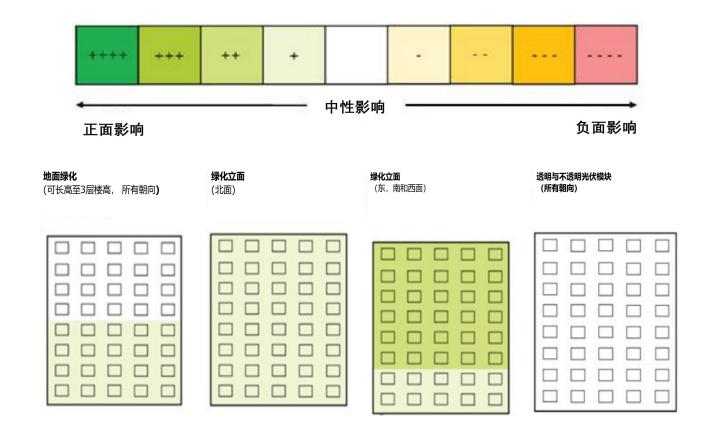
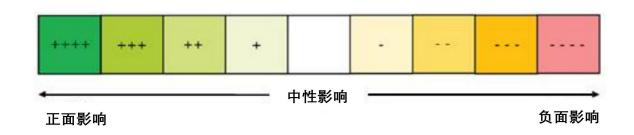


图20 立面绿化和立面光伏对室内气候舒适度的影响


2.9.2. 建筑运营: 供暖能耗、制冷能耗和电力能耗

外立面系统的评估

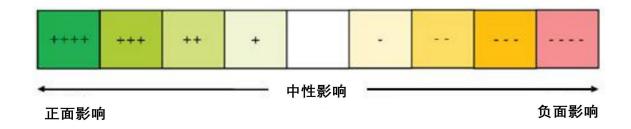
下图展示了各种外立面系统在"建筑运营"方面与参考立面的影响力比较。

"建筑运营:供暖能耗、制冷能耗和电力能耗"总结

- 1. 由于外立面本身具备良好的保温隔热性能,因此立面绿化,尤其是基于地面种植的绿化系统,对于改善建筑保温性能的帮助非常小。
- 2. 对于新建建筑,两种绿化方式均可降低夏季制冷需求和电力需求,但会增加冬季的用能需求,总体而言,全年能耗仍然略微下降。考虑到未来全球持续变暖,立面绿化对制冷方面的减缓作用将变得更为迫切和重要。
- 3. 由于立面绿化对于减少能耗的效果有限,因此未对楼层和朝向进行颜色分级。然而,在受到阳光直射的朝向(东向和西向)设计立面绿化效果更佳。
- 4. 与参考立面系统 (带通风层的纤维水泥板干挂式墙体构造系统) 相比,光伏立面的综合影响可被评估为中性。

地面绿化	立面绿化	不透明光伏模块	透明光伏模块
(可长高至3层楼高,所有朝向)	(所有朝向)	(所有朝向)	(所有朝向)

图21 立面绿化和立面光伏对能耗需求和电力需求的影响


2.9.3. 光伏立面发电量、太阳能用能潜力和季节性考虑

外立面系统的评估

下图展示了光伏立面(20%转换效率)与参考立面相比,在全年和冬季月份的发电潜力,该评估基于全年发电量和冬季发电量的计算结果。

"光伏立面发电量、太阳能用能潜力和季节性考虑"总结

- 1. 南向立面发电潜力最大,其次是东向、然后是西向,最后是未被阴影遮挡的立面区域。
- 2. 北向立面和被阴影遮挡的立面区域(较低楼层)也可发电,但收益显著较低。

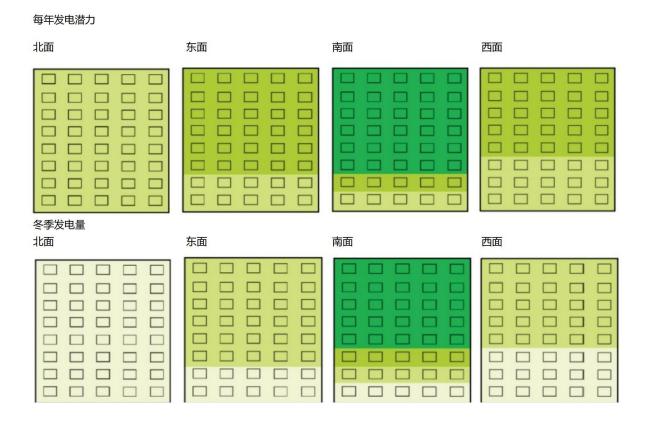


图22 不同朝向和不同楼层立面光伏的年度发电潜力和冬季发电量比较

2.9.4. 生产制造和建筑运营:全生命周期碳排放评估 Life Cycle Assessment (LCA)

外立面系统评估下图展示各种外立面系统在"全生命周期碳排放评估"方面与参考立面的影响力比较,并考虑生产阶段、日常维护和运行阶段产生的温室气体总排放为依据。

"生产制造和建筑运营:全生命周期碳排放评估"总结

- 1.种植于地面土壤的立面绿化系统,其全生命周期碳排放仅略高于参考立面(材料成本略高)。
- 2. 基于墙体的立面绿化所需的施工工作要比种植于地面的立面绿化系统更多,因此全生命周期碳排放略高。
- 3. 对于立面光伏在生产制造阶段对环境产生的负面影响,不透明的光伏模块比透明的光伏模块更快得到摊销和弥补(发电效率更高)。
- · 4. 有针对性的布置立面光伏板的朝向有助于更快的摊销和弥补:运行期间发电量越高,效果越好。

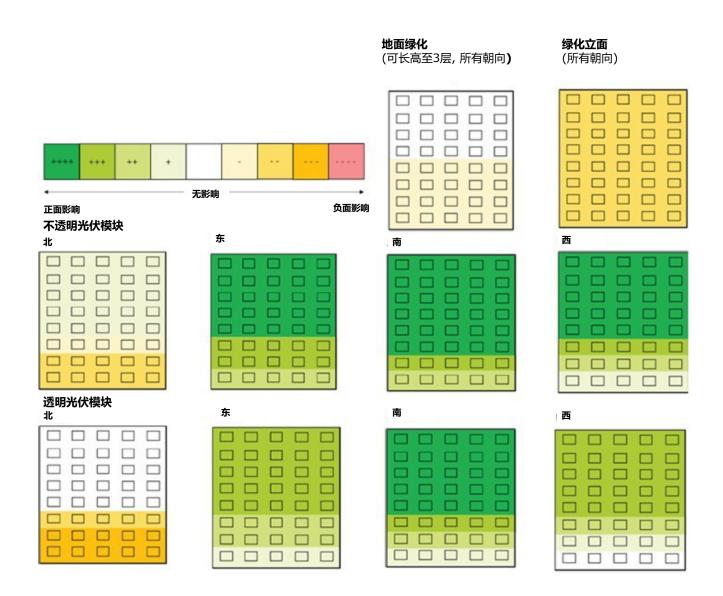


图23 四种外立面系统在生产建设、日常维护和建筑运营的全生命周期

2.9.5. 经济性考量:初始投资成本和全生命周期成本 (LCC)

外立面系统评估

下图展示了各种外立面系统在"全生命周期成本(LCC)"方面与参考立面的影响力比较。

"经济性考量:初始投资成本和全生命周期成本(LCC)"总结

- · 1. 基于地面种植的立面绿化与参考立面相比,投资成本略高,并伴有持续的维护成本。
- 2. 基于墙体的立面绿化在所有立面系统中成本最高。
- 3. 不透明立面光伏如果布置在太阳能潜力较高的外立面上,初始的高成本可以在其生命周期内得以摊销和补偿。
- 4. 透明立面光伏的全生命周期成本略高于参考立面,特别是在太阳能潜力较低的外立面区域。

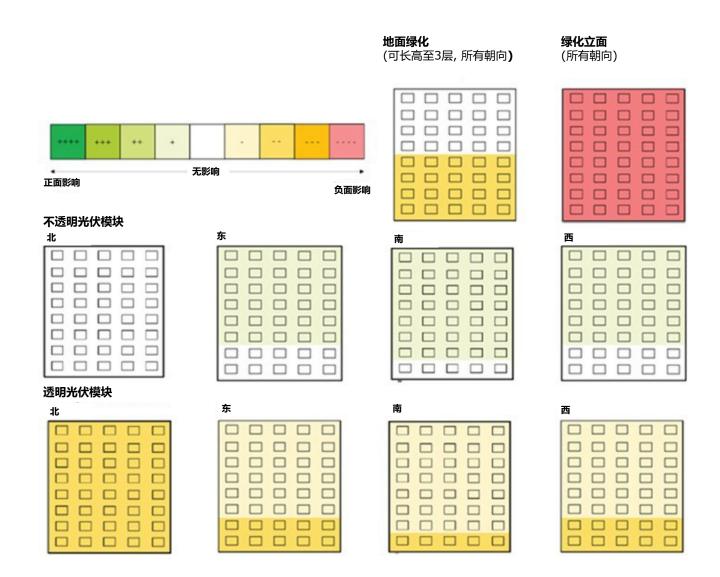
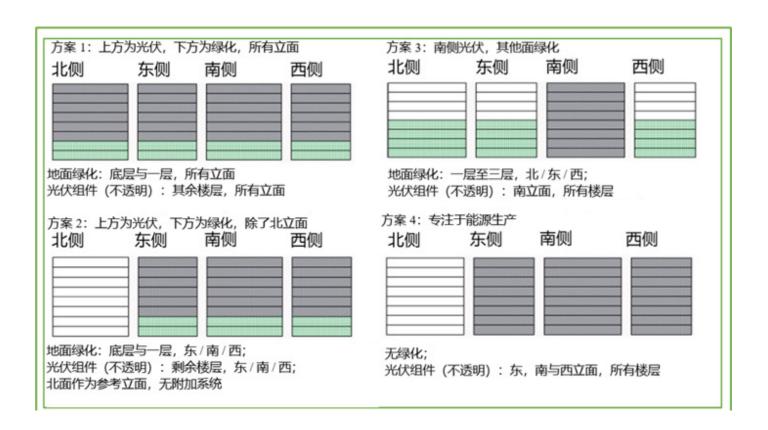
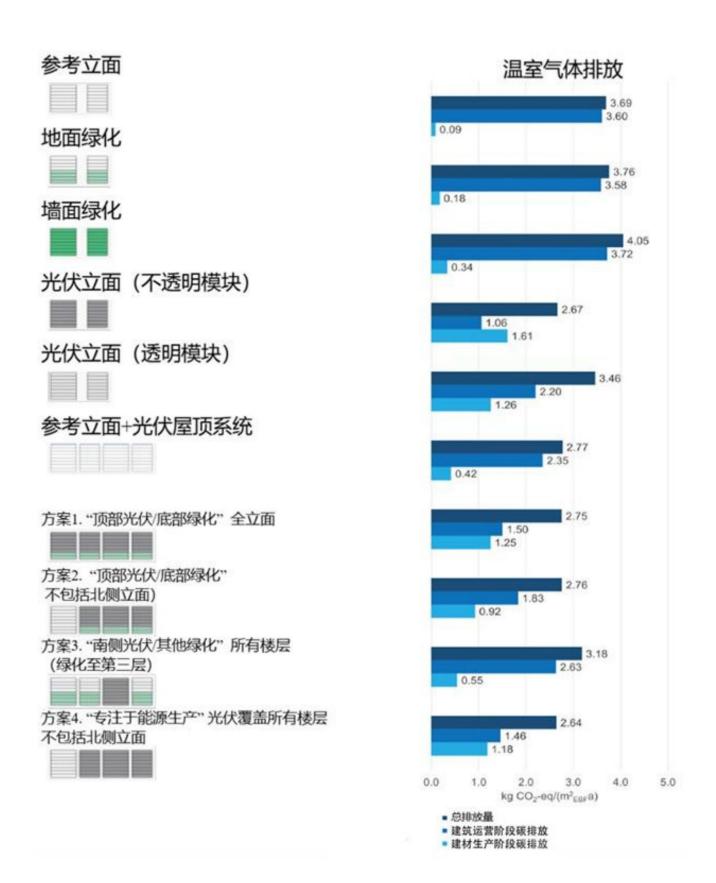


图24 各种外立面系统的投资和生命周期成本与参考外立面对比


2.10. 绿化和光伏的组合


2.10.1. 定性分析和定量分析的研究发现

绿化和光伏在建筑立面上都提供了各自的优势,特别是绿化可以为户外空间提供定性的附加价值,包括更好的居住环境、更丰富的生物多样性和更好的雨水回收管理。另外考虑到全球性变暖的气候变化以及城市化率的不断增加,立面绿化潜在的建筑降温效果将变得越来越重要。此外,光伏立面发电也将在未来越发重要,并成为瑞士能源供应结构可持续转型的关键措施。光伏和绿化在建筑立面上的结合可以综合两种系统的优势,且通常情况下二者不会相互竞争:立面绿化在靠近人群活动的位置效果最佳,大多数情况下是较低楼层的立面区域;立面光伏则应该布置在具有较高发电潜力的外立面区域,即在没有遮挡的南、东和西立面上,且通常适用于较高楼层的立面区域,因为较低的楼层通常会被邻近建筑物遮挡,特别是在城市地区。

2.10.2. 系统组合

基于这些发现,针对建筑物立面不同系统的组合进行了进一步分析研究。右图是立面绿化和立面光伏的各种组合方案(方案1至方案3),或优化光伏立面的分布(方案4)。在所有方案中,如果立面绿化采用基于地面种植的系统,其对环境的负面影响较低,将比基于墙面种植的系统成本效益更高。而光伏立面则更推荐不透明光伏板,因其更高的发电转换效率而更具生态优势和经济优势。

图25 常规立面系统(带通风层的纤维水泥板干挂式墙体构造系统)、绿化立面系统、光伏立面系统、光伏屋顶+常规立面系统,以及四种组合方案的碳排放比较。(计算结果均基于"新建建筑")

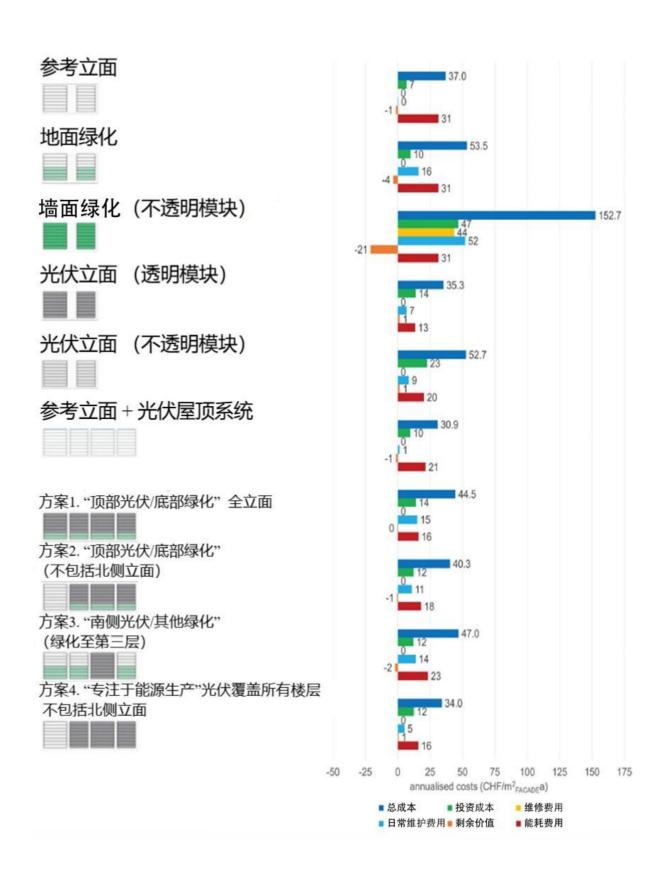
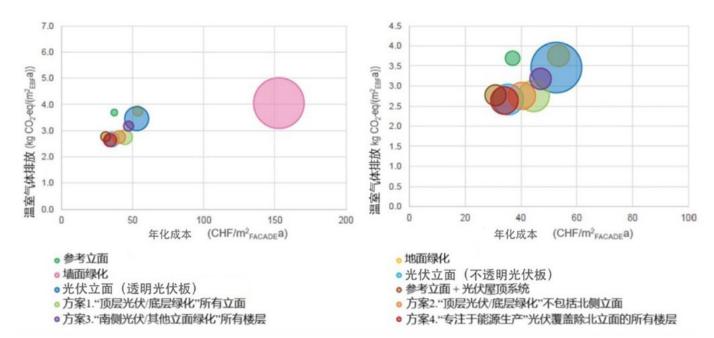



图26 常规立面系统(带通风层的纤维水泥板干挂式墙体构造系统)、绿化立面系统、光伏立面系统、光伏屋顶+常规立面系统,以及四种组合方案的年化成本(折现值)。(计算结果均基于"新建建筑",并以30年观察期为限)

全生命周期评估和不同场景下的全生命周期成本比较

图27 以30年观察期计算的全生命周期碳排放评估及其年化成本(左侧:所有选型方案;右侧:不包括墙体立面绿化方案的局部放大),圆圈的大小代表投资成本。(计算结果均基于"新建建筑")

图28 光伏和绿化的结合在各方面看来都是值得的(© Boutiquehotel Stadthalle Wien)

2.10.3. 额外的经济价值

相比于建筑所有外立面全部铺设光伏板的方案 来说,选择性的将光伏模块布置在合适的朝向和位 置,其全生命周期成本更低。

- 绿化立面和光伏立面的结合与传统常规外立面相比,全生命周期成本仅略微增加。
- 决策过程中还应考虑不可量化的方面,例如通过 立面绿化和立面光伏提高建筑的美学吸引力、提 高出租率和增加长期租赁(减少空置率)。

2.10.4. 生态效益

与传统常规外立面相比,光伏模块在立面上的合理布置,或者立面绿化和立面光伏的结合可以降低建筑物全生命周期的温室气体碳排放。

2.11. 绿化和光伏的积极作用

以下是对绿化和光伏各种积极作用的概述:

城市噪音

- + 高植物密度
- + 高密度绿植
- + 小叶植物结构
- + 分散布置的土壤基底
- + 与噪音源距离较近 (通常位于较低楼层)
- + 与噪音源距离较远 (通常位于较高楼层)
- + 与绿化结合

户外空间吸引力

- + 不同的植物种类
- + 开花时间和花瓣颜色
- + 靠近人群和休闲区 (通常位于较低楼层)
- + 设计选项: 纹样、颜色、透明度.....
- + 与绿化结合

雨水回收

- + 较厚的土壤层基质 (利于渗透蓄积)
- + 高密度绿植 (蒸发能力)
- + 迎风面:北向/西北向(瑞士)

空气质量

- + 高密度的叶片
- + 较高的覆盖率
- + 充足的供水
- + 靠近空气污染源 (通常位于较低楼层)

室内舒适度和建筑运营(供暖能耗、制冷能耗和电力能耗)

- + 高密度绿植/较厚的土壤层基质
- + 较高的覆盖率
- + 冬季落叶植物产生阴影较少,避免阻挡阳光辐射提高室内温度
- + 在未翻新的旧建筑中效果最好 (提高保温性能U值)

外立面表面温度及微气候影响 (夏季)

- + 高密度绿植/较厚的土壤层基质
- + 充足的供水
- + 朝向: 优先东向、其次南向和西向
- + 改善空气流通
- + 与绿化结合

生物多样性

- + 偏向于本土植物物种
- + 选择采用适应当地气候条件的植物
- + 混合栽培(不同植物种类)而不是特定植物的单一栽培
- + 作为绿地空间的连接元素 (形成"绿化带")
- + 与透明光伏模块结合 (阴影 -> 不同的微气候)

冬季用电

- + 发电效率高
- + 高角度安装至垂直安装
- + 避免受到阴影遮挡的影响
- + 朝向: 优先南向, 其次东向和西向
- + 采用耐久性更高和转换效率更高的光伏系统 (利于 后期维护和保养)

生产制造和后期运营:全生命周期碳排放评估(LCA)

- + 避免采用材料碳排放密集型系统,有意识地选择低碳材料和低碳系统
- + 高密度绿植
- + 发电转换效率高,保证碳排放快速摊销
- + 避免受到阴影遮挡的影响
- + 选择合理的建筑布局,减少建筑阴影
- + 朝向: 优先南向, 其次东向和西向
- + 与日常出行(电动汽车)和热泵技术结合,可能的情况下布置储能设备

经济分析: 初始投资成本和全生命周期 成本 (LCC)

- + 系统维护和保养要求较低
- + 坚固耐用的设备和系统(使用寿命长,抗风险能力强)
- + 明确可能获取的经济补贴和优惠政策
- + 使用标准化的光伏模块
- + 系统的简易性
- + 优化发电效益
- + 系统可靠,抗风险能力高

生产制造过程的隐含碳排放

- + 建筑基础部分采用可重复使用和可再生材料(例如回收钢、再生木等)
- + 降低施工成本,降低建筑结构的额外成本
- + 仅在必要时使用复杂的高技设备
- + 优先考虑选择本地企业的产品和工艺
- + 建筑基础部分采用可重复使用和可再生材料(例如回收钢、再生木等)
- + 比较不同产品的碳足迹认证/有限考虑本地产品
- + 选择坚固耐用的系统(保证可拆卸性,保证可更换损坏的模块)

年发电潜力

- + 绿化+光伏组合 (蒸发冷却 -> 降温提高效率)
- + 发电转换效率高
- + 避免受到阴影遮挡的影响
- + 朝向: 优先南向, 其次东向和西向
- + 采用耐久性更高和转换效率更高的光伏系统 (利于后期维护和保养)

2.12. 焦点话题

2.12.1. 绿化与光伏结合

不同外立面系统的结合可以在产能效率、建筑设计等各个方面带来优势。在城市环境中,建筑物的低楼层区域经常被周边建筑的阴影所遮挡,阻碍了光伏立面的广泛运用,而安装在无遮挡的建筑立面上的光伏模块的才具有更短的投资回报期。相对而言,北立面或阴影立面更适合设计为立面绿化,并使靠近街道的区域受益,提高此处的空间质量,并对城市微气候产生积极影响。

图31 巴塞尔近郊Allschwil地区的Hortus办公楼,外立面(左图)采用可水平移动的光伏板,同时也作为遮阳构件;内院(右图)则设计为立面垂直绿化(© Herzog & de Meuron)

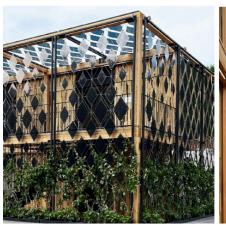

图29 左图:量产光伏面板多样化的设计选择(© SI Module GmbH、ertex Solartechnik GmbH、friSolar);右上图:苏黎世住宅建筑,Solaris 416,不透明立面光伏板和屋面光伏板,保证所有光伏模块的颜色统一(©Beat Bühler);右下图:Solar Decathlon 21/22,CoLLab的创新设计,立面格网用于安装光伏构件和立面绿化(©Lukas Fischer,HFT Stuttgart)

图32 左图:苏黎世Höngg地区的住宅建筑,立面采用不透明光伏组件(© Kämpfen Zinke + Partner AG);中图右图:巴塞尔环境与能源部办公楼,定制的光伏板赋予建筑物独特的建筑立面表情(© AUE)

图30 左图:洛桑瑞士科技会议中心的建筑外立面采用彩色透明光伏组件(@Mediacom EPFL);右图:来自Local+事务所的Solar Decathlon 21/22参赛作品,在立面设计中将光伏区和绿化区根据楼层进行明显区分(@team-localplus)

图33 来自CoLLab事务所的SolarDecathlon 21/22获奖作品,立面格网用于安装光伏构件和垂直绿化(©Lukas Fischer, HFT Stuttgart)

2.13. 检查清单

不同设计阶段的操化外立面和光伏立面(PV)设计要求,根据瑞士设计标准SIA 28 经 4132 4132 4132 4132 4132 4132 4132 4132							
部型信息 創建并记录项目总体目标、周边社区、城市或省份的设计指导原则,例如能耗指标参考、气候变化地图、城市气候指南或绿色通廊指南。 确定并考虑与外立面设计相关的总体规划或社区规划方案,考虑能源优化、城市气候、绿化景观等优先事项。 帮助客户熟悉了解各种外墙系统的优缺点,确保这些信息呈送给项目决策者。 澄清相关的法律批准条件(相关限制和要求) - 提前澄清落实审批程序和资格要求 (关键点: 文物保护、建筑外观、防火规范、外墙反光、鸟类保护/动物保护等) - 光伏系统(PV): 核实潜在的电力公司的相关条件(查询发电并网的可能性) 逐计目标 共同定义建筑外立面的设计指标,例如外立面设计品质,室内空间品质、能源生产、生物多样性、(雨) 水管理、邻里社交和建筑识别性等方面的设计目标 横定建筑外围护结构需要满足的能源概含方案,优先考虑以下方面: - 能源生产(电力生产或热力生产)和降低能耗(如保温素效、固定退阳问移动遮阳系统、结构遮阳/自然遮阳,如绿化遮阳) - 光伏系统(PV): 最大化全年发电量局大化冬季发电量 - 光伏系统(PV): 最大化全年发电量局大化冬季发电量 - 光伏系统(PV): 储能选项(如电池储能,或者与电动汽车或热泵设备的组合) - 光伏系统(PV):储能选项(如电池储能,或者与电动汽车或热泵设备的组合) - 地校不同外立面缘化设计概念,优先考虑以下方面: - 比较不同外立面缘化设计方案与周边环境、屋顶形式和立面设计的关系 - 立面设计:通过绿化改善室外气候,为外立面提供遮蔽或为室外/室内区域提供遮蔽 - 立面设计:通过绿化改善室外气候,为外立面提供遮蔽或为室外/室内区域提供遮蔽		1. 策略规划设计阶段	2.初步设计阶段	3.项目设计阶段	4.招标设计阶段	5. 施工图设计阶段	5.建筑运营阶段
要化地图、城市气候指南或綠色通廊指南。 确定并考虑与外立面设计相关的总体规划或社区规划方案,考虑能源优化、城市气候、绿化暴观等优先事项。 帮助客户熟悉了解各种外增系统的优缺点,确保这些信息呈送给项目决策者。 澄清相关的法律批准条件(相关限制和要求) - 提前澄清落实审批程序和资格要求 (关键点:文物保护、建筑外观、防火规范、外增反光、鸟类保护/动物保护等) - 光伏系统(PV): 核实潜在的电力公司的相关条件(查询发电并网的可能性) 设计目标 共同定义建筑外立面的设计指标,例如外立面设计品质,室内空间品质、能源生产、生物多样性、(雨)水管理、邻里社交和建筑识别性等方面的设计目标 确定建筑外围护结构需要满足的能源概念方案,优先考虑以下方面: - 能源生产(电力生产或热力生产)和降低能耗 (如保温系数、固定遗阳/可移动遗阳系统、结构遗阳/自然遮阳,如绿化遮阳) - 光伏系统(PV): 最大化全年发电量/最大化冬季发电量 - 光伏系统(PV): 最大位全生发电量/最大化冬季发电量 - 光伏系统(PV): 强大位全生发电量/最大化冬季发电量 - 光伏系统(PV): 储能选项(如电池储能,或者与电动汽车或热泵设备的组合) 确定建筑外围护结构的绿化设计概念,优先考虑以下方面: - 比较不同外立面缘化设计方案与周边环境、屋顶形式和立面设计的关系 - 立面设计:通过绿化改善室外气候,为外立面提供遮蔽或为室外/室内区域提供遮蔽 - 立面设计:提供多种设计可能性(例如村托自然、颜色、季节变化)	基础信息			1-3	-	2,	Ť
观等优先事项。 帮助客户熟悉了解各种外增系统的优缺点,确保这些信息呈送给项目决策者。 澄清相关的法律批准条件(相关限制和要求) - 提前澄清落实审批程序和资格要求 (关键点:文物保护、建筑外观、防火规范、外增反光、鸟类保护/动物保护等) - 光伏系统(PV): 核实潜在的电力公司的相关条件(查询发电并网的可能性) 数计目标 共同定义建筑外立面的设计指标,例如外立面设计品质,室内空间品质、能源生产、生物多样性、(雨)水管理、邻里社交和建筑识别性等方面的设计目标 确定建筑外围护结构需要满足的能源概念方案,优先考虑以下方面: - 能源生产(电力生产或热力生产)和降低能耗 (如保温家数、固定遮阳/可移动遮阳系统,结构遮阳/自然遮阳,如绿化遮阳) - 光伏系统(PV): 卷大化全年发电量,最大化冬季发电量 - 光伏系统(PV): 卷大化全年发电量,最大化冬季发电量 - 光伏系统(PV): 储能选项(如电池储能,或者与电动汽车或热泵设备的组合) 确定建筑外围护结构的绿化设计概念,优先考虑以下方面: - 比较不同外立面绿化设计方案与周边环境、屋顶形式和立面设计的关系 - 立面设计: 通过绿化改善室外气候,为外立面提供遮蔽或为室外/室内区域提供遮蔽 - 立面设计: 通过绿化改善室外气候,为外立面提供遮蔽或为室外/室内区域提供遮蔽 - 立面设计: 通过绿化改善室外气候,为外立面提供遮蔽或为室外/室内区域提供遮蔽							
澄清相关的法律批准条件(相关限制和要求) - 提前澄清曆实审批程序和资格要求 (关键点:文物保护、建筑外观、防火规范、外墙反光、鸟类保护/动物保护等) - 光伏系统(PV): 核实潜在的电力公司的相关条件(查询发电并网的可能性) 设计目标 共同定义建筑外立面的设计指标,例如外立面设计品质,室内空间品质、能源生产、生物多样性、(雨)水管理、邻里社交和建筑识别性等方面的设计目标 确定建筑外围护结构需要满足的能源概念方案,优先考虑以下方面: - 能源生产(电力生产或热力生产)和降低能耗 (如保温系数、固定遮阳/可移动遮阳系统,结构遮阳/自然遮阳,如绿化遮阳) - 光伏系统(PV):最大化全年发电量局大化冬季发电量 - 光伏系统(PV):统伏发电的自消纳覆盖率,发电用电量/发电用电时间一致性 - 光伏系统(PV):储能选项(如电池储能,或者与电动汽车或热泵设备的组合) 确定建筑外围护结构的绿化设计概念,优先考虑以下方面: - 比较不同外立面绿化设计方案与周边环境、屋顶形式和立面设计的关系 - 立面设计:通过绿化改善室外气候、为外立面提供遮蔽或为室外/室内区域提供遮蔽 - 立面设计:通过绿化改善室外气候,为外立面提供遮蔽或为室外/室内区域提供遮蔽 - 立面设计:提供多种设计可能性(例如衬托自然、颜色、季节变化)							
- 提前澄清落实审批程序和资格要求 (关键点: 文物保护、建筑外观、防火规范、外墙反光、鸟类保护/动物保护等) - 光伏系统 (PV): 核实潜在的电力公司的相关条件 (查询发电并网的可能性) 设计目标 共同定义建筑外立面的设计指标,例如外立面设计品质,室内空间品质、能源生产、生物多样性、(雨)水管理、邻里社交和建筑识别性等方面的设计目标 确定建筑外围护结构需要满足的能源概念方案,优先考虑以下方面: - 能源生产(电力生产或热力生产)和降低能耗(如保温系数、固定遮阳/可移动遮阳系统,结构遮阳/自然遮阳,如绿化遮阳) - 光伏系统 (PV): 最大化全年发电量/最大化冬季发电量 - 光伏系统 (PV): 光伏发电的自消纳覆盖率,发电用电量/发电用电时间一致性 - 光伏系统 (PV): 储能选项(如电池储能,或者与电动汽车或热泵设备的组合) 确定建筑外围护结构的绿化设计概念,优先考虑以下方面: - 比较不同外立面绿化设计方案与周边环境、屋顶形式和立面设计的关系 - 立面设计: 通过绿化改善室外气候,为外立面提供遮蔽或为室外/室内区域提供遮蔽 - 立面设计: 提供多种设计可能性(例如衬托自然、颜色、季节变化)	帮助客户熟悉了解各种外墙系统的优缺点,确保这些信息呈送给项目决策者。						
共同定义建筑外立面的设计指标,例如外立面设计品质,室内空间品质、能源生产、生物多样性、(雨)水管理、邻里社交和建筑识别性等方面的设计目标 确定建筑外围护结构需要满足的能源概念方案,优先考虑以下方面: - 能源生产(电力生产或热力生产)和降低能耗 (如保温系数、固定遮阳/可移动遮阳系统,结构遮阳/自然遮阳,如绿化遮阳) - 光伏系统(PV):最大化全年发电量/最大化冬季发电量 - 光伏系统(PV):光伏发电的自消纳覆盖率,发电用电量/发电用电时间一致性 - 光伏系统(PV):储能选项(如电池储能,或者与电动汽车或热泵设备的组合) 确定建筑外围护结构的绿化设计概念,优先考虑以下方面: - 比较不同外立面绿化设计方案与周边环境、屋顶形式和立面设计的关系 - 立面设计:通过绿化改善室外气候,为外立面提供遮蔽或为室外/室内区域提供遮蔽 - 立面设计:提供多种设计可能性(例如衬托自然、颜色、季节变化)	- 提前澄清落实审批程序和资格要求 (关键点:文物保护、建筑外观、防火规范、外墙反光、鸟类保护/动物保护等)						
性、(雨) 水管理、邻里社交和建筑识别性等方面的设计目标 确定建筑外围护结构需要满足的能源概念方案,优先考虑以下方面: - 能源生产(电力生产或热力生产)和降低能耗 (如保温系数、固定遮阳/可移动遮阳系统,结构遮阳/自然遮阳,如绿化遮阳) - 光伏系统(PV):最大化全年发电量/最大化冬季发电量 - 光伏系统(PV):光伏发电的自消纳覆盖率,发电用电量/发电用电时间一致性 - 光伏系统(PV):储能选项(如电池储能,或者与电动汽车或热泵设备的组合) 确定建筑外围护结构的绿化设计概念,优先考虑以下方面: - 比较不同外立面绿化设计方案与周边环境、屋顶形式和立面设计的关系 - 立面设计:通过绿化改善室外气候,为外立面提供遮蔽或为室外/室内区域提供遮蔽 - 立面设计:提供多种设计可能性(例如衬托自然、颜色、季节变化)	设计目标						
- 能源生产(电力生产或热力生产)和降低能耗 (如保温系数、固定遮阳/可移动遮阳系统,结构遮阳/自然遮阳,如绿化遮阳) - 光伏系统(PV): 最大化全年发电量/最大化冬季发电量 - 光伏系统(PV): 光伏发电的自消纳覆盖率,发电用电量/发电用电时间一致性 - 光伏系统(PV): 储能选项(如电池储能,或者与电动汽车或热泵设备的组合) 确定建筑外围护结构的绿化设计概念,优先考虑以下方面: - 比较不同外立面绿化设计方案与周边环境、屋顶形式和立面设计的关系 - 立面设计: 通过绿化改善室外气候,为外立面提供遮蔽或为室外/室内区域提供遮蔽 - 立面设计: 提供多种设计可能性(例如衬托自然、颜色、季节变化)							
- 比较不同外立面绿化设计方案与周边环境、屋顶形式和立面设计的关系 - 立面设计: 通过绿化改善室外气候,为外立面提供遮蔽或为室外/室内区域提供遮蔽 - 立面设计: 提供多种设计可能性 (例如衬托自然、颜色、季节变化)	- 能源生产(电力生产或热力生产)和降低能耗 (如保温系数、固定遮阳/可移动遮阳系统,结构遮阳/自然遮阳,如绿化遮阳) - 光伏系统(PV): 最大化全年发电量/最大化冬季发电量 - 光伏系统(PV): 光伏发电的自消纳覆盖率,发电用电量/发电用电时间一致性						
在盈利性分析中以「长期主义」作为分析和决策的基础	比较不同外立面绿化设计方案与周边环境、屋顶形式和立面设计的关系立面设计:通过绿化改善室外气候,为外立面提供遮蔽或为室外/室内区域提供遮蔽						
	在盈利性分析中以「长期主义」作为分析和决策的基础						

不同设计阶段的绿化外立面和光伏立面(PV)设计要求, 根据瑞士设计标准SIA 112:2014对建筑项目的各阶段设计要求为例	1.策略规划设计阶段	2.初步设计阶段	3.项目设计阶段	4.招标设计阶段	5. 施工图设计阶段	6.建筑运营阶段
项目场地						
分析建筑场地的当前状况和未来发展方向 主题包括:空气质量、城市景观、气候、太阳辐射、朝向、遮阳、建筑使用 时间(根据外立面方位和楼层高度)、与周边建筑的关系、建筑供能方式、 室外活动区域的需求、人群聚集区的设计等。						
评估外立面绿化和光伏立面系统的必要性和适用性						
THAT VILL						
建筑设计						
确定外立面设计的空间潜力 哪些地方有足够的设计空间?适用于什么样的外立面系统?						
针对不同的外立面设计选项进行评估比较: - 多种外立面系统和屋顶系统作为设计选项(成本比较/效益比较) - 在立面设计中考虑绿化立面和光伏立面(仅光伏,仅绿化,或两者结合) - 成本分析/粗略成本计算,与常规的外立面设计进行比较, 考虑不同系统的全生命周期成本效益以及当地的上网电价和补贴						
确定技术可行性 (外墙性能、结构可行性)						
验核立面系统的供应要求和维护要求 (空间要求、维修可达性、起重设备需求等)						
立西婦ル						
文面绿化 根据外立面设计的要求,需要进行初步澄清: - 采用地生植物系统还是墙面植物系统 - 植物直接在建筑外墙上生长或通过攀援工具生长 (需验证植物生长是否会破坏外墙) - 根据系统的选择考虑植物的生长季节 - 常绿植物或落叶植物 (考虑季节,夏季-绿化作为遮荫元素,冬季-落叶绿化允许通过透明门窗直接获得太阳辐射热量,建议在北立面采用常绿植物)						
根据系统确定外立面的结构设计要求,如有必要,采取措施以满足植物重量承载方面的要求。准备验证结构方面的挑战和问题。						
根据当前和未来的场地条件 (例如水、光、热、化学和机械因素) 预选植物,并与相关专家协商。						

不同设计阶段的绿化外立面和光伏立面(PV)设计要求, 根据瑞士设计标准SIA 112:2014对建筑项目的各阶段设计要求为例 外墙绿化:	1. 策略规划设计阶段	2.初步设计阶段	3.项目设计阶段	4.招标设计阶段	5. 施工图设计阶段	6.建筑运营阶段
如有必要,制定灌溉方案 - 根据气候变化(温度峰值、可能的暂时性缺水)澄清灌溉需求 - 使用雨水和/或中水 - 评估是否采用基于传感器进行控制(特别是对于墙面植物系统)						
光伏立面:						
在初步设计中,考虑该系统对于立面设计的外观影响 - 采用不透明构件、透明构件、倾斜构件进行设计 - 评估光伏面板作为建筑物固定遮阳的可行性 - 整合成为建筑设计的整体色彩概念						
在设计阶段明确光伏板的标准模块尺寸 (从而降低成本)						
确定并绘制光伏系统的布局方式,并写入项目设计说明						
明确当前需求和未来需求的具体问题(结构设计要求、安装方式、发电逆变器、电缆布线、余电上网概念方案、上网电量测量方案和计费方案、与屋面铺设工种、给排水工种、建筑设备安装工种以及电动汽车的交接配合工作)						
防火规范:						
制定防火疏散设计方案 - 遵守州和联邦级别的相关标准和设计指南 - 与专家协商,制定防火疏散方案 - 与相关部门讨论,并得以批准						
确保得以正确维护: 如果有必要,定期浇水和维护(清除枯木),以确保满足防火和美观要求						
确保得以正确维护: 定期检查组件/系统						
建筑施丁:						
在建材选择和植物选择中考虑其生态影响(例如系统组件的建材全生命周期评估、环境影响评估、水管理和植物营养供应等)						
在技术性细节中考虑建材重复利用的循环性 (例如可拆卸性、可回收性、可重复使用性)						

不同设计阶段的绿化外立面和光伏立面(PV)设计要求, 根据瑞士设计标准SIA 112:2014对建筑项目的各阶段设计要求为例	1.策略规划设计阶段	2.初步设计阶段	3.项目设计阶段	4.招标设计阶段	5. 施工图设计阶段	6.建筑运营阶段
设备调试:						
完成所需的测试 (电力测试、灌溉系统测试)						
向相关管理部门、消防部门和当地电网运营商同高建筑设备调试相关事宜						
对项目业主、物业管理(FM)人员或技术人员进行指导						
建筑维护和保养:						
制定物业维护和设备保养的概念方案 -确定外立面维修的可达性(例如临时升降平台、外吊式电梯等) -检查维修作业中脚手架和升降平台的空间要求和地面屋面的承重能力 -与专业人员合作(外立面清洁专家、园丁)						
制定并确保建筑用能监控概念方案 - 记录电力发电量和用电流向 - 记录系统故障报告,按照NIV协议进行定期检查 读取和处理相关建筑用能数据						
考虑由专业人员进行管理,并通过物业管理(FM)承包商的指导手册进行管理-物业维护合同-定期清洁-发生故障时进行检修(逆变器、软件更新、灌溉系统)-更换系统组件(支撑龙骨支架、退化的光伏模块(重新供电)、受损电站)						
拆卸下来的光伏构件运输至专业的设备回收商进行回收利用						
文档记录:						
对项目规划设计和施工的所有方面进行记录:包括图纸、报告、技术数据表、物业维护方案等等						
记录物业维护相关工作及所有其他已开展的工作						

-0	ö	HI.	н	١
Ж	ℼ	H	J	١

标有颜色的文本仅适用于以下外立面系统:

绿化立面

光伏立面

