

中瑞零碳建筑项目

技术报告

中国零碳建筑标准的影响模拟

中文版

2025年3月

本报告系在中瑞零碳建筑项目框架下编制。该项目由瑞士发展与合作署资助,并与中华人民共和国住房和城乡建设部合作实施,旨在推动国际合作与交流

作者:

Sadik, Yigit, ZHAW IBP, sadik.yigit@zhaw.ch Juan, Mahecha, ZHAW IBP, mahe@zhaw.ch Luca, Baldini, ZHAW IBP, luca.baldini@zhaw.ch ZHAW Institute for Building Technology and Process IBP. Tössfeldstrasse 11, 8401 Winterthur https://www.zhaw.ch/de/archbau/institute/ibp

引用格式:

Yigit, S., Mahecha, J., Baldini, L. (2025). Impact Simulation of the Chinese ZEB Standard. Sino-Swiss Zero Emissions Building Project Research Report. Intep-Skat: Zurich

中瑞零碳建筑项目是由瑞士发展与合作署资助,并与中华人民共和国住房和城乡建设部合作开展的国际合作项目。该项目旨在通过分享瑞士在可持续及零碳建筑领域的先进经验,推动减少温室气体排放,助力中国建筑行业实现碳中和发展。

项目实施团队:

瑞士茵态 (intep) 综合规划咨询有限公司 瑞士Skat咨询公司 中国建筑科学研究院

微信公众号: SinoSwissZEB

网站: zeb-china.org

封面图片: ©ZHAW, 2025

摘要

零碳建筑转型对中国实现低碳目标至关重要。本研究量化了新推行的零碳建筑标准对不同城市地区减排目标的差异化影响,以四大典型气候区——夏热冬暖(深圳)、严寒(哈尔滨)、寒冷(北京)以及夏热冬冷(上海)为研究对象,开发了一种基于 GIS 的评估方法,系统分析住宅建筑实施零碳标准后的减排效益。

现有建筑存量中的每栋建筑根据高度和类型被划分为不同的建筑原型(联排住宅、低层建筑、高层板楼和高层塔楼)。在确定建筑原型后,系统会根据 DeST 数据库和相关文献资料,为其分配相应的建筑围护结构配置和运行时间表,以模拟基线供暖和制冷的能源需求。模拟结果显示,建筑的能源性能在不同气候区、建成年代和建筑类型之间存在显著差异。其中老旧建筑与联排住宅的单位面积能源需求明显更高,尤其是在以供暖为主的地区,如北京和哈尔滨,其基线碳排放分别为 31.3-74.2 千克二氧化碳当量/平方米/年(kgCO₂e/(m²·a)) 和 37.1-79.4 kgCO₂e/(m²·a)。相比之下,在以制冷为主的深圳,碳排放为 38.2-42.0 kgCO₂e/(m²·a),而气候相对均衡的上海则为 45.0-59.3 kgCO₂e/(m²·a)。

通过对各气候区的改造策略进行评估,结果显示,在以供暖为主的地区,升级围护结构(如隔热保温和更换高性能窗户)效果显著;在供冷和供暖需求并重的地区,暖通空调系统和光伏系统的升级最具成效;而在气候相对平衡的地区,综合性的改造措施最为有效。通过热泵电气化与光伏系统集成,还可进一步实现减排目标,在低层住宅和太阳能潜力充足的区域甚至可实现净负碳排放。

为了扩大研究范围,研究采用 k-均值聚类方法,选取具有代表性的"超级街区"进行模拟扩大。聚类基于关键特征,如传热系数、体形系数和密度,从而识别出不同类型的超级街区。研究计算了在当前电网碳强度条件下,超级街区的总碳减排潜力,结果显示年减排量为:北京 68,100 吨二氧化碳当量/年,哈尔滨市 73,606 吨二氧化碳当量/年,上海市73,296 吨二氧化碳当量/年,深圳市 118,390 吨二氧化碳当量/年。

通过在多个约 1 平方公里的区域内划分超级街区,本研究从更广阔的城市尺度对能耗和碳排放进行了评估。该超级街区层面的研究方法通过将邻近建筑的遮荫效应纳入考量,提升了能源绩效评估的准确性,并强化了改造策略的升级适用能力。该研究框架有效识别了优先改造区域,特别是能耗需求最高的老旧低层建筑及高体形系数的超级街区。

本研究为政策制定者、城市规划者和设计者提供了宝贵的见解,支持向低碳城市发展转型,并与全球气候目标保持一致。然而,研究结果也强调了数据质量和可得性的重要性,因为准确而全面的数据集对于优化所提出框架的性能至关重要。通过展示零碳标准在建筑和城市尺度上的潜力,这项研究为中国实现零碳未来的努力做出了贡献。

主要发现 (关键信息摘要)

- 本研究为中国的政策制定者、城市规划师和设计人员提供了有价值的见解,有助于推动中国向低碳城市发展的转型。同时也对实现全球气候目标作出贡献。
- 本研究提出了一种可复制的方法框架,用于评估零碳建筑标准在城市尺度上的影响, 为政策制定者提供了可操作的数据,支持战略规划和脱碳行动。
- 中国住宅建筑的能源性能在不同气候区、建筑年代和建筑类型间存在显著差异,其中 老旧建筑(特别是联排住宅)在以供暖为主的地区呈现出更高的单位能耗。
- 有效的建筑改造策略高度依赖气候条件:在供暖主导型地区,围护结构升级效果显著; 在供冷主导型和供暖主导型地区,暖通空调系统与光伏系统改进均能大幅提升能效; 而在冷热均衡型气候区,综合改造措施最为有效。
- 研究结果表明,电网的脱碳至关重要。当电网碳排放强度降低 25%(至 0.5126 kgCO₂e/kWh)时,所有超级街区在第3种情景下(结合被动与主动措施)都能够满足中国《零碳建筑技术标准》定义的近零碳排放阈值。
- 本研究表明,相较于单体建筑层面的分析,超级街区层级的分析更符合实际情况,因为它考虑了邻近建筑物的遮挡效应。该方法还能提升建筑改造策略在城市尺度上的扩大性与精准度,从而优化规划实施效率。
- 本研究提出的评估框架的有效性高度依赖于数据的质量和可得性,强调了建立更精准、 全面的中国建筑存量数据库的必要性。研究中建筑高度、建造年份、占地面积以及超 级街区特征等关键参数尤为重要。

目录

摘要	3
主要发现(关键信息摘要)	5
图表清单	7
表格清单	8
缩略语清单	9
1 引言	10
1.1 背景	10
1.2 项目目的	11
1.3 项目目标	12
2 方法、过程、结果与讨论	12
2.1 工作包 A: 案例研究选择	14
2.2 工作包 B: 建立建筑原型的基准模型	16
2.2 工作包 C: 典型建筑的零碳建筑影响建模	20
2.3 工作包 D: 超级街区分析	26
2.5 工作包 E 和工作包 F——尺度扩大过程与情景分析	42
3 结论	53
4 展望	55
5 已发表成果及学术传播	56
6 念孝 文献	57

图表清单

冬	1:	研究方法总体实施框架	. 13
冬	2:	中国气候区分布 (Dai 等, 2022 年)	. 15
冬	3:	将 DeST 数据库转换并合并到 MongoDB 的流程	. 17
冬	4:	居住、照明和电器作息表	. 19
冬	5:	2010-2018 年北京建筑 EnergyPlus 与 DeST 模拟结果对比	. 19
冬	6:	基线模拟结果	. 20
冬	7:	EnergyPlus 与 Cesar-P 典型建筑配置(建筑尺度)	.21
冬	8:	超级街区层级分析的总体框架	. 27
冬	9:	超级街区选择流程	. 28
冬	10:	补全建筑占地缺失数据	. 28
冬	11:	所选超级街区的简单统计数据	. 29
冬	12:	基于主成分可视化的聚类分析	. 31
冬	13:	聚类探索性数据分析	. 32
冬	14:	北京代表性聚类	. 33
冬	15:	哈尔滨代表性超级街区聚类	. 34
冬	16:	上海代表性超级街区聚类	. 35
冬	17:	深圳代表性超级街区聚类	. 36
冬	18:	选定的北京尺度扩大区域	.43
冬	19:	尺度扩大后的北京超级街区聚类	.44
冬	20:	选定的哈尔滨尺度扩大区域	.46
冬	21:	尺度扩大后的哈尔滨超级街区聚类	.46
冬	22:	上海尺度扩大区域选址	.48
冬	23:	尺度扩大后的上海超级街区聚类	.49
冬	24:	深圳尺度扩大区域选址	. 51
冬	25:	尺度扩大后的深圳超级街区聚类	. 52

表格清单

表	1:	建筑原型的几何参数和自然通风率数据	16
表	2:	建筑现有及改造后设计的暖通空调系统	22
表	3:	旨在提升能效的脱碳路径	23
表	4:	近零碳住宅建筑二氧化碳排放强度(单位: kgCO ₂ e/(m²·a))	24
表	5:	在既定措施下,考虑暖通空调与生活热水系统的建筑层面分析模拟结果(单位:	
kg	CO2	.e/(m²·a))	25
表	6:	包含电器和照明排放的建筑尺度分析模拟结果(单位: kgCO ₂ e/(m ² ·a))	26
表	7:	针对能效提升的脱碳路径确定研究	37
表	8:	代表性超级街区在定义情景下的分析结果(不包括电器和照明的碳排放)(单位:	
kg	CO2	.e/(m²·a))	38
表	9:	代表性超级街区在定义情景下的分析结果(包含电器和照明的碳排放,单位: 千克	Ī
_:	氧化	/碳当量/立方米/年)	40
表	10:	:在定义的情景下,电网碳排放降低 25%情况下,包含电器和照明的代表性超级街区	X
分;	析结	果(单位:千克二氧化碳当量/立方米/年)	41
表	11:	: 在包含电器和照明的情景下,假设电网碳排放因子降低 50%的代表性超级街区分析	沂
结:	果((单位: 千克二氧化碳当量/立方米/年)	41
表	12:	: 在包含电器和照明的情景下,假设电网碳排放因子降低 90%的代表性超级街区分析	沂
结:	果((单位: 千克二氧化碳当量/立方米/年)	41
表	13:	: 尺度扩大后的北京超级街区的碳排放量(单位: 千克二氧化碳当量/立方米/年).	44
表	14:	:哈尔滨尺度扩大区域碳排放量(单位:千克二氧化碳当量/立方米/年)	47
表	15:	: 上海尺度扩大区域碳排放量(单位: kgCO ₂ e/(m ² ·a))	49
表	16:	:深圳放大区碳排放量(kgCO₂e/(m²⋅a))	52

缩略语清单

• ACH: 每小时换气次数 (Air Changes per Hour)

• ASHP: 空气源热泵 (Air Source Heat Pump)

• CABR: 中国建筑科学研究院(China Academy of Building Research)

• CESAR-P: 综合能源系统分析与改造规划(Comprehensive Energy System Analysis and Retrofit Planning)

• **DeST**: 设计师仿真工具包 (Designer's Simulation Toolkit)

• **DHW**: 生活热水 (Domestic Hot Water)

• GB/T: 国家标准 (Guobiao Standards, 中国国家标准)

• GIS: 地理信息系统 (Geographic Information System)

• HP: 热泵 (Heat Pump)

• HVAC: 暖通空调系统 (Heating, Ventilation, and Air Conditioning)

MoHURD: 住房和城乡建设部 (Ministry of Housing and Urban-Rural Development)

• NZEB: 近零能耗建筑 (Nearly Zero Energy Building)

• **PV**: 光伏 (Photovoltaic)

• SHGC: 太阳得热系数 (Solar Heat Gain Coefficient)

SSP: 共享社会经济路径(Shared Socio-economic Pathway)

• **U-factor**: 热传导系数 (Thermal Transmittance)

• WP: 工作包 (Work Package)

• **ZEB**: 零碳建筑 (Zero Emission Building)

1 引言

1.1 背景

中国作为全球最大的二氧化碳排放国(Ma et al., 2019),已制定明确的降碳"路线图",承诺在 2030 年前实现碳达峰、2060 年达成碳中和目标(Wang et al., 2021)。值得注意的是,中国建筑能耗约占全国能源需求总量的三分之一(Yu et al., 2014),且会因建筑面积、收入水平和人口数量等因素而动态变化。因此,建筑向零碳发展对减缓气候变化非常重要,特别是在城市快速发展的地区。推广零碳建筑(ZEB)是减少排放的重要方式,可以通过多种技术和方法来降低建筑能耗。建筑的能源性能在很大程度上取决于其物理特性,而通过遵循更严格的建筑标准进行改造升级,可以有效优化这些特性。因此,推行零碳建筑法规,是实现城市发展与国家气候目标协同的关键策略。

既有研究普遍证实建筑能效提升对碳减排具有重要作用。以中国经济中心城市深圳为例,研究表明该市建筑运行阶段碳排放量在 2005-2019 年间增长近一倍(J. Wang 等, 2021)。研究显示,严格的能效政策和可再生能源应用可使建筑业在 2025 年实现碳达峰,比全国目标提前五年。Ma 等(2020)研究了中国历史上的碳减排措施及未来排放趋势,指出需要完善政策体系、强化经济激励并推动技术进步。Geng 等(2022)对粤港澳大湾区住宅建筑的碳排放研究表明,建筑运行阶段的碳排放占总排放量的主要部分。

此外,已有研究也探讨了节能和能源生产措施(如围护结构升级、自然采光优化、光伏系统集成)在降低碳排放方面的作用。为提升能效,研究人员开发了 AutoBPS 等先进的能源模拟工具 (Deng 等, 2023),可用于模拟能源需求、评估遮挡影响并制定改造策略。Li 和 Wong (2007)分析了邻近建筑遮阳效应对能耗与采光的影响。针对中国国情,Z. Liu 等 (2019)研究了多种节能措施的适用性,包括高效隔热系统、高性能窗户系统、良好的气密性和新风热回收系统。Braun 等 (2012)探讨了光伏系统的大规模部署及其对配电网的影响,并指出高比例光伏接入带来的技术和监管挑战。Valencia 等 (2022)和 Shea 等 (2020)从城市尺度探讨了碳中和建筑环境与节能改造措施,并强调了城市规划对实现长期减排目标的重要性。

其他研究也关注现场发电与储能在实现碳中和方面的作用。Wiryadinata 等(2019)与 Opel等(2017)强调了将热泵和热电联产系统与太阳能、地热等低温可再生能源进行系统整合的

必要性。关于零碳转型的经济可行性研究表明,政策干预与财政激励对推动大规模转型至关重要(Huang 等,2022)。Deng 等(2023)进一步指出,城市尺度的能源建模是支撑城市能效战略制定的关键工具。针对中国建筑能耗的估算与预测,现有研究采用了多元方法体系,包括全球评估模型(Eometal.,2012)和中国建筑能耗模型(Guoetal.,2021)等。关于零能耗建筑的研究已探讨了其宏观层面的影响,但尚未纳入空间地理信息系统(GIS)维度(Yang等,2019; S.-C. Zhang等,2021)。在代表性建筑存量分析方面,An等(2023)的研究为本研究奠定了坚实的基础。

1.2 项目目的

尽管已有大量研究评估了诸如建筑围护结构改进、暖通空调系统调整、可再生能源整合以及智能控制等减排策略的效果,但在跨时空尺度建模这些干预措施时,仍面临重大挑战。当将节能潜力推演至区域或国家层面时,这一问题尤为凸显(Eggimann 等,2022)。因此,一种将空间建模与能源模拟技术相结合的整体性方法,对于系统评估大规模建筑改造至关重要。

本研究通过定量分析方法,评估了零碳建筑标准在中国多元城市气候条件下的实施效果。通过基于 GIS 的方法,研究评估了在住宅建筑中实施这些标准对减排效果的影响。根据建筑高度和年代进行类型划分,并为每个类别配置相应的围护结构参数与运行时间表。随后进行基线供暖和制冷能耗的模拟,为零碳标准下可实现的节能与减排潜力提供量化依据。

零碳解决方案规模化推广的核心瓶颈在于: 从单体建筑拓展到整个城区时, 其系统实施的复杂度显著提升(Keirstead 等, 2012)。为此, 本研究采用 k-均值聚类算法对建筑级数据进行尺度扩大分析, 从而识别具有代表性的城市"超级街区"单元。这些超级街区作为城市分区的基准单元, 既可用于划定更广泛的城市功能区划, 又能支持全市尺度的能耗与排放总量估算。在中国城市中, 超级街区是主要的城市形态, 因此被视为开展城市能源绩效分析和尺度扩大研究的适宜单元(Johnson 等, 2022)。本研究构建的方法论形成了可复制的零碳标准评估框架, 为决策者制定战略规划提供了可操作的数据支撑。

本研究通过整合能源建模与城市尺度分析,系统评估了零碳建筑标准在中国各城市的适用性与实施效能。研究成果深化了对此类策略如何对接国家"双碳"目标与全球减排承诺的理解,

同时为快速城市化地区的能效优化提供了可操作的决策建议。最终,通过提出建筑领域减排的可推广实施路径,本研究为可持续城市发展讨论提供了科学支撑。

1.3 项目目标

本研究旨在解决以下研究问题:

- 中国不同城市/气候区现有住宅建筑的能效水平如何?
- 中国不同气候区城市实施新型零排放标准对建筑碳排放的影响机制如何?
- 针对不同气候区,(围护结构改造、暖通系统升级等)哪些建筑节能改造策略能实现 最优减排效果?
- 所提出的框架能否识别需优先改造的重点区域(如高排放/低能效的超级街区),从
 而为决策者的资源优化配置提供科学依据?

针对上述问题, 本研究设定了以下主要目标:

- 评估现有住宅建筑的能源性能:通过评估中国不同城市和气候区建筑的当前能源需求.建立能效基准和减排潜力基线。
- 量化零碳标准的影响:研究零碳建筑标准的实施对中国不同城市气候区供暖和制冷 能源需求的影响。
- 确定有效的改造策略:比较围护结构和暖通系统升级等不同改造措施的效果,以确定最适合特定气候区的策略。
- 识别优先改造区域: 该框架帮助相关部门识别对碳排放影响最大的区域, 应优先进行改造。
- 比较模拟尺度:分析超级街区尺度和单体建筑尺度模拟在能源和碳减排结果上的差异。

2 方法、过程、结果与讨论

本项目采用综合研究方法,通过单体建筑与超级街区的精细化分析,将结果尺度扩大至1

平方公里的更大区域。如图 1 所示,该框架包含三个层级:单体建筑尺度、超级街区尺度及尺度扩大至区域分析。

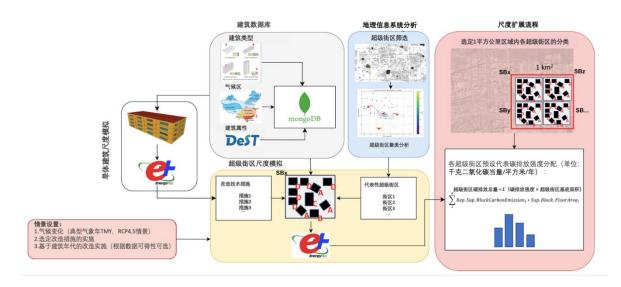


图 1: 研究方法总体实施框架

在建筑单体尺度研究中,研究者从既有数据库中提取建筑原型及模型参数。通过 Python 脚本从既有数据库中提取建筑几何信息、材料属性和用能时间表等关键参数,作为 EnergyPlus 模拟的输入数据,该过程综合考虑了建筑类型、建造年代和所在气候区特征。核心模拟参数包括人员作息模式、温控设定参数和设备运行工况,这些数据源自以下渠道: DeST 建筑能耗数据库、《近零能耗建筑技术标准》(NZEB),以及 An 等(2023)的研究成果和住房和城乡建设部 2019 年颁布的相关技术规范。借助基于 EnergyPlus 的 Cesar-P 工具,对建筑原型及其改造措施进行模拟,评估性能改进情况。结果用于指导超级街区层面的情景分析 (Orehounig 等, 2022)。

在超级街区层面,采用 k-均值聚类方法对建筑原型进行分类归组以识别共性特征。针对每个聚类选取代表性超级街区,通过多情景模拟(包括气候变化情景)评估其能源绩效与碳排放方面的表现。

最后,尺度扩大过程将超级街区的结果应用到选定城市约1平方公里大小的区域,分析不同情景对能源性能和碳排放的影响,同时评估不同改造水平下的潜在改善效果。

项目分为六个工作包:

• A: 案例研究定义与数据收集

• B: 建筑原型基线性能评估

• C: 零碳建筑 (ZEB) 对建筑原型的影响建模

• D: 超级街区分析

• E: 尺度扩大至1平方公里区域

• F: 情景分析

各步骤的详细说明见以下第 2.1 至 2.5 节。

2.1 工作包 A: 案例研究选择

本研究选取北京、哈尔滨、深圳和上海作为零碳建筑转型的案例城市,主要基于三方面考量:首先,这些城市具有鲜明的地域特征和气候多样性,能够代表中国不同气候区的典型城镇化发展模式;其次,北京、深圳和上海作为国家低碳城市试点政策的重要参与者(深圳于 2010 年首批入选,北京和上海于 2012 年第二批入选),分别在绿色技术创新、节能建筑推广、公共交通优化和碳市场建设等方面积累了丰富经验(Zhou & Zhou, 2021);最后,虽然哈尔滨未纳入试点范围,但其严寒气候特征为研究不同气候条件下的零碳转型路径提供了宝贵的对比样本,从而完善了对全国多样化背景下建筑碳中和路径的系统分析。

2.1.1 气候多样性

所选城市涵盖了中国范围内多样的气候类型,使得本研究能够全面分析气候对建筑能效表现和改造潜力的影响(Dai et al., 2022; H. Wang et al., 2015)。如图 2 所示,中国气候区划包含五个主要类型。北京属于寒冷气候区,冬季寒冷夏季炎热,建筑供暖和制冷需求较高。哈尔滨位于中国东北,气候严寒,是研究寒冷地区供暖需求的独特案例。深圳位于中国南方,位于热带气候区,制冷需求突出。上海属于亚热带湿润气候区,供暖和制冷需求随季节变化显著,是沿海城市的典型代表。

图 2: 中国气候区分布 (Dai 等, 2022年)

2.1.2 城市类型和建筑存量特征

北京和上海作为高度城市化的特大城市,拥有规模庞大的建筑存量,涵盖住宅与商业建筑的多元组合,既包括高耗能的既有建筑,也包含新建的节能建筑(Pan 等,2019)。深圳作为快速发展的科技中心,以其现代化的城市发展和对可持续性的高度重视而著称,越来越多的绿色建筑正重塑其城市风貌(Güneralp & Seto,2008; Ng,2002)。哈尔滨作为一个中等规模城市,其严寒气候与较低的城市密度构成了独特的能源挑战。其建筑存量包括依赖集中供暖系统的历史能源密集型建筑,以及为抵御严寒冬季而设计的隔热性能良好的新建筑(C. Liu 等,2023)。所选城市在城市形态、密度和气候上的差异,为分析既有建筑改造和新建建筑的碳减排策略提供了全面的基础。通过研究高能耗既有建筑与节能新建项目之间的相互作用机制,这些案例城市为探索中国不同气候区和城市发展背景下的零碳转型路径提供了重要参考。

2.1.3 数据可得性

数据可得性是影响案例城市选址的另一关键因素。本研究所需数据包括:用于不同建筑年代和高度能耗模拟的基准建筑结构、材料属性及运行时间表等参数。模拟所需的参考建筑数据源自 DeST 数据库,该数据库包含具有完整模拟参数的建筑原型文件(An 等, 2023)。

本项目所需的补充数据主要包括超级街区数据及其他相关建筑参数。超级街区数据用于将中

国的建筑群归类为超级街区单元,这部分数据来源于早期研究建立的 GIS 数据库(Long 等,2019)。项目所需的其他数据还包括建筑年代、占地面积和建筑高度数据。由于中国建筑年代信息尚未公开,研究采用中国建筑科学研究院提供的样本超级街区数据,并假设开发区建筑年代呈均匀分布。建筑基底面积数据通过开源平台 OpenStreetMap 获取 (Geofabrik, 2024),而建筑高度数据则采用 World Settlement Footprint 3D 数据集,该数据集综合了 Sentinel-1和 Sentinel-2影像(10米分辨率)改进的人类住区掩膜、12米数字高程数据以及 TanDEM-X 雷达影像(Esch 等,2022)等多源遥感信息融合生成。

2.2 工作包 B: 建立建筑原型的基准模型

在本项目工作单元中,我们确立了建筑原型基准模型。根据 An 等人(2023)的研究成果,建筑被划分为四种原型:联排住宅、低层住宅、高层塔楼和高层板楼。该研究使用 DeST 软件为每类原型开发了基准模型(An 等,2023),具体建筑分类流程详见表 1。

如表 1 所示,各建筑原型的几何参数与自然通风率数据均已列明。这四类原型建筑均依据 其建造时期适用的能源标准进行建模,使得该前期研究(An 等,2023)对本项目具有重要 参考价值——基于其建立的 DeST 原型模型可转换为 EnergyPlus 模型,并作为本项目基准模 型使用。

表 1: 建筑原型的几何参数和自然通风率数据

	建筑面积 (m²)	空调面积 (m²)	ī积 (m²) 楼层数 体型系数 平均窗墙面积		平均窗墙面积比	自然通风率
						(ACH)
联排住宅	1044	930	1-3	0.48	0.27	0.5–5
低层住宅	1795	1703	4-6	0.36	0.26	0.5–5
高层板楼	4040	3947	7-17	0.31	0.26	0.5–5
高层塔楼	10261	10261	17<	0.30	0.25	0.5–5

在本研究中,为转换 DeST 模型成果,我们综合运用了已发表论文与 DeST 软件原生功能。通过自主编写的 Python 脚本,系统提取了 DeST 相关 Microsoft Access 数据库文件的全量数据,并将其存储于 MongoDB 数据库中,该技术方案可实现数据重复调用以生成 EnergyPlus 新模

型。具体 MongoDB 数据库构建流程如图 3 所示。

如图所示,数据按城市(北京、哈尔滨、上海和深圳)、建筑类型(联排住宅、低层住宅、高层板楼和高层塔楼)以及建筑年代(决定当时适用的节能标准)进行分类整理。存储的建筑属性包括墙体、楼板和屋顶等围护结构的构造与材料细节。此外,人员活动(包括人员在场情况、照明和电器使用等)均来自 DeST 模型和 An 等人(2023)发表的论文。DeST 原型模型采用集中供热和分体空调制冷。DeST 原型模型采用区域供暖和分体式空调制冷。在项目当前阶段,为简化模型,决定在 EnergyPlus 中使用理想负荷替代详细的暖通空调系统进行模拟。因此,这些模型最终采用理想负荷而非完整的暖通空调系统进行仿真。后续章节将详细阐述模型开发的完整流程。

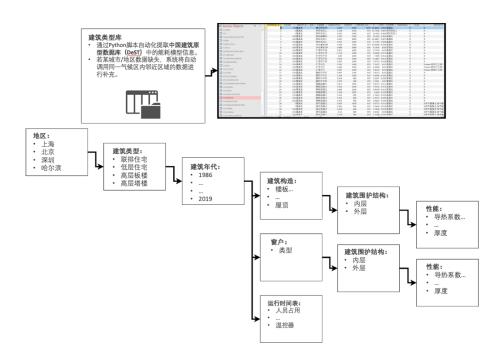


图 3: 将 DeST 数据库转换并合并到 MongoDB 的流程

2.1.2 建筑模型的开发

由于模型差异和限制,以下内容需要单独生成:

- 窗户和玻璃系统的建模
- 运行时间表, 如人员在场情况、家电和照明的使用等

其余模型则基于 An 等人(2023)的研究和 DeST 原型建筑模型文件开发。

窗户建模:

在建筑能耗模拟中,DeST 和 EnergyPlus 对窗户建模的方法存在差异,因此需要基于研究中提供的原型建筑信息进行假设调整。根据数据库记录,所有建筑均采用普通玻璃的双层窗,且材料类型统一。然而,在结合该数据库进行文献数据分析时发现,老旧建筑的窗户传热系数明显偏高,这很可能与窗框的质量和使用年限有关。遗憾的是,数据库中并未提供窗框的详细参数信息,导致难以建立高精度的 EnergyPlus 模型。

因此,选择了简化的窗户模型,即 SIMPLEGLAZINGSYSTEM,该模型依赖三个数据点: 传热系数、太阳热增益系数和可见光透射率。通过数据库可提取这三个关键参数,采用该方法预计能够获得与文献中一致的研究结果。

运行时间表的确定:

原型 DeST 模型已为每个房间单独设置了时间表。然而,本研究的模型采用简化方法,将建筑的每个楼层视为单一区域。因此,我们需要调整时间表设置,以匹配文献中详细模型的标准。如图 4 所示,本项目开发的简化时间表可视为前人研究(An 等,2023)所提出方案的通用版本。

根据最新研究数据(Zheng 等, 2025),中国城镇住宅套均面积为 100 平方米,人均居住面积为 38.6 平方米。在模拟中,当所有居住者在家时,模型将计入人员散热形成的热负荷,且建筑制冷运行完全取决于人员作息时间表。需要注意的是,本模型将人员作息表直接作为制冷时间表使用,并将所有大于 0 的取值视为 1 (因为对单一区域进行部分制冷在物理上不具实际意义)。因此,在 EnergyPlus 模拟的验证分析中,可以预见本研究的制冷负荷计算结果将高于 An 等 (2023) 发表的基准值。

参考文献中的照明与电器设备作息表极为详细,为每种房间类型均单独设置了不同的时间表。鉴于本研究模型的简化性,我们制定了一个具有代表性的通用作息表,以确保兼容性的同时维持整体能耗特征。最终推导出的照明与电器设备运行时间表如图 4 所示。

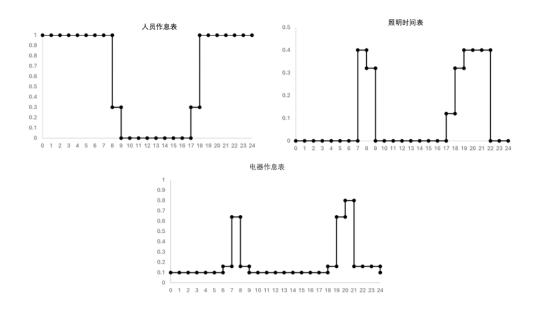


图 4: 居住、照明和电器作息表

2.1.3 分析结果

基线模拟结果采用 EnergyPlus/Cesar-P 进行, 并与北京 2010 年至 2018 年建造建筑的结果以及 An 等人(2023 年)的研究结果进行了验证,如图 5 所示。北京 2010-2018 年建造建筑的基线模拟结果符合我们预期的差异,但总体上显示出良好的一致性:

- DeST 模型采用复杂几何建模(特别是联排住宅),而本研究基于体形系数使用简化 几何模型。
- 本研究将每层楼视为单一区域进行模拟,而 DeST 模拟则包含楼层内各公寓的详细分区、且每个分区采用独立作息表。
- 由于 DeST 与 EnergyPlus 的窗户建模差异,需采用近似处理方法完成模型转换。

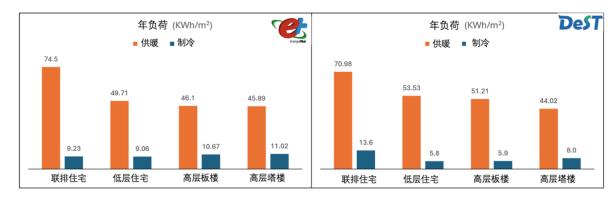


图 5: 2010-2018 年北京建筑 EnergyPlus 与 DeST 模拟结果对比

图 6 展示了北京、哈尔滨、上海和深圳四个城市的完整 EnergyPlus 模拟结果。北京和哈尔滨

属于采暖主导型地区,而深圳的建筑则更偏向供冷主导型。另一方面,上海建筑的采暖与制冷负荷较为均衡。正如预期,每次标准更新后,建筑能耗表现普遍提升。这些结果揭示了不同气候区各类型建筑的能效特性,所建立的模型也将作为项目后续研究的基础。此外,通过与参考文献中的数据进行对比,证实了 EnergyPlus 中定义的建筑模型能够准确预测采暖与制冷负荷,因此可用于进一步分析。

图 6: 基线模拟结果

2.2 工作包 C: 典型建筑的零碳建筑影响建模

在前一工作包中,我们通过建筑层面的分析验证了采用 DeST 建模的 EnergyPlus 模拟结果与 文献研究数据的一致性。在本工作包中,将继续开展建筑尺度分析,重点研究暖通空调系统 模型及改造方案。本研究以零碳建筑标准目标值为基准,通过调整建筑性能参数(即改造措施)来确定达成零碳建筑要求的关键技术路径,具体包括围护结构优化、建筑能源系统升级 以及屋顶光伏发电系统建设等核心改进措施。基于基准情景与改造情景的能耗模拟对比,量 化评估各类改造措施对不同建筑原型能效表现的提升效果。

本研究旨在通过提出针对现有建筑的定制改造措施,提升建筑能效并减少排放。需要明确的是,本分析结果同样适用于以新建建筑替代既有建筑的情况,只要新建建筑能达到与改造建筑同等的能耗和排放性能。

工作包 C 所采取的步骤如图 7 所示。与前一工作包 B 类似,所有与材料、构造、几何形状和

运行时间表时间表相关的属性均来自 DeST 模型数据库。暖通空调系统(包含现有系统与改进方案)的特性参数通过文献调研方法确定。改造方案基于新的零排放标准数值定义并实施,结果用于分析该标准在建筑层面的影响。

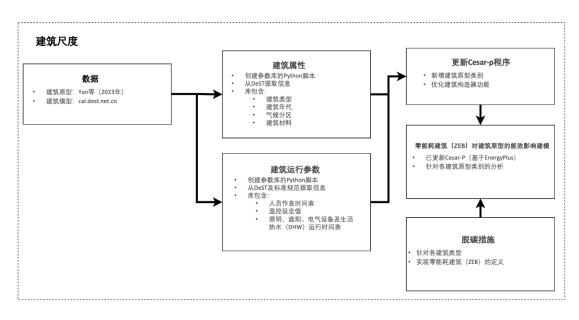


图 7: EnergyPlus 与 Cesar-P 典型建筑配置 (建筑尺度)

2.2.2 当前暖通空调系统及可能的改进

在供暖需求主导的北方地区(如哈尔滨、北京),集中燃气供热系统是建筑供暖与生活热水的主要热源。在更大范围内,华北地区的集中供暖系统为多个建筑甚至整个社区供热,这些系统多依赖燃煤或燃气电厂,发电和供热同时进行(Su等,2018;L.Zhang等,2016)。在改造中,转向集中式空气源热泵是一种更节能的替代方案,与中国逐步淘汰燃煤供暖的政策方向相符(Su等,2018)。空气源热泵已在农村煤改清洁能源项目中推广,且在城市地区的使用逐渐增加。空间制冷保持不变,依赖于分布式空气源热泵,这种系统在这些地区已较为普遍。

在以制冷需求为主或气候温和的地区(如上海、深圳),凭借其成本效益优势及对温暖气候的适应性,被广泛应用于建筑供暖与制冷(Su 等, 2018)。在现有建筑中,生活热水通常由分散式燃气热水器供应。鉴于南方地区燃气基础设施的普及性,这仍是实用选择。改造方案采用热泵热水器替代燃气热水器,因其能效更高,符合中国推动电气化及提升建筑能效的目标(G. Zheng & Bu, 2018)。

总体而言, 这些选择优先考虑实用且可推广的解决方案, 利用现有基础设施, 同时向更节能、

低排放的替代方案过渡。当前建筑及拟改造建筑所选用的暖通空调系统详见表 2。

表 2: 建筑现有及改造后设计的暖通空调系统

	改造方案										
供暖需求占主导地位的气候区(哈尔滨、北京)											
空间供暖	集中式燃气供热系统	集中式空气源热泵									
热水系统	集中式燃气供热系统	集中式空气源热泵									
空间制冷	分布式空气源热泵	分布式空气源热泵									
	制冷需求占主导地位	的气候区(上海、深圳)									
空间供暖	分布式空气源热泵	分布式空气源热泵									
热水系统	集中式燃气热水器	热泵热水器									
空间制冷	分布式空气源热泵	分布式空气源热泵									

2.2.3 脱碳路径

建筑低碳化转型需要被动式与主动式措施的战略性结合,以提升能效并降低碳排放。表 3 列出了一系列旨在提升建筑能效的脱碳路径。这些措施逐步涵盖保温升级、窗户更换、暖通空调系统改进、现场可再生能源发电以及遮阳构件。减少建筑围护结构热损失是脱碳的关键环节。地面保温、屋面保温和墙体保温在不同路径中被系统性地引入,从而最大限度地降低供暖与制冷需求。在特定措施中还对窗户进行升级,以进一步提升热工性能并减少能量损失。建筑低碳化改造采用的保温层厚度和窗户升级方案严格依据中国《近零能耗建筑技术标准》(GB/T 51350-2019,住房和城乡建设部 2019 年发布)。该标准针对不同气候区制定了差异化的建筑构件传热系数要求,以实现最佳能效表现。在窗户选型方面,北京采用传热系数 1.2 W/(m2.K) 的玻璃,哈尔滨为 1.0 W/(m2·K) ,上海 2.0 W/(m2·K) ,深圳 2.5 W/(m2·K) ,所有地区玻璃的太阳得热系数均固定为 0.30。墙体保温设计则分别达到北京 0.20 W/(m2·K) 、哈尔滨 0.15 W/(m2·K) 、上海 0.40 W/(m2·K) 、深圳 0.80 W/(m2·K) 的传热系数,确保满足各地不同的供暖制冷需求。屋面保温同样采取气候适应性设计,北京和哈尔滨采用 0.15 W/(m2·K) ,上海 0.25 W/(m2·K) ,深圳 0.35 W/(m2·K) 。地面保温则统一执行 0.30 W/(m2·K) 的标准。脱碳战略还包括提升暖通空调系统能效,以高效设备替代传统系统。这些改进显著降低了建

筑运行碳排放、优化了供暖、制冷和生活热水系统的能耗。具体改造方案详见表 2。部分技

术路线还引入了屋顶光伏系统,通过现场可再生能源发电来抵消电网用电量,推动建筑向净零能耗目标迈进。除主动式系统改造外,某些方案还增设遮阳构件这一被动式措施,通过控制太阳辐射得热来提升热舒适性并降低制冷负荷,特别适用于以制冷为主的气候区域。

表 3 所示的脱碳路径采取渐进式实施策略,从基础的保温与窗户改造起步,逐步引入暖通系统升级、光伏集成、遮阳构件等进阶措施,最终形成包含所有改造项目的综合方案。通过实施这些技术路径,建筑能耗需求和碳排放量将得到显著降低,为应对气候变化和实现可持续发展目标作出积极贡献。

表 3: 旨在提升能效的脱碳路径

#技术措施	地面保温	屋面保温	墙体保温	外墙升级	暖通系统优化	光伏板	遮阳构件
						安装	
1	+	+		+			
2	+	+	+	+			
3	+	+		+	+		
4	+	+	+	+	+		
5	+	+		+	+	+	
6	+	+	+	+	+	+	
7	+	+		+			+
8	+	+	+	+			+
9	+	+		+	+		+
10	+	+	+	+	+		+
11	+	+		+	+	+	+
12	+	+	+	+	+	+	+

2.2.4 碳排放计算

新的零碳建筑标准基于每平方米建筑面积的碳排放强度来评估建筑性能。在本项目中,计算了净运营碳排放量,并将其作为评估改造措施效果的基准。因此,未考虑建筑的隐含碳排放。计算得到的碳排放量将与住宅建筑对应的排放阈值进行比较,具体见表 4(住房和城乡建设部,2023)。

表 4: 近零碳住宅建筑二氧化碳排放强度 (单位: kgCO₂e/(m²·a))

太阳能辐照	严寒地区	寒冷地	夏热冬冷地区	夏热冬暖地区	温和地区
度评级		区			
I	14	13	1	1	1
II	15	14	1	16	12
III	16	16	16	17	13
IV	1	1	1	17	14

为了量化新法规的影响,需要将模拟得到的能源性能结果转换为净碳排放值。为此,我们采用了建筑物暖通空调与生活热水系统中主要能源——电力和天然气的碳排放强度。根据一项最新研究,中国的综合电力碳足迹为 0.6835 吨二氧化碳当量每千瓦时 (Q. Zhang 等, 2024)。 考虑到中国 104 个天然气田的情况,从井口到工厂门的天然气碳排放强度范围为 0.022 至 0.1563kgCO₂e/kWh,加权平均碳排放强度为 0.078kgCO₂e/kWh (Gan 等, 2020)。天然气燃烧的碳排放强度为 0.180–0.216kgCO₂e/kWh (Venkatesh 等, 2011)。本项目计算天然气碳排放强度采用的数值为 0.276kgCO₂e/kWh。

2.2.5 分析结果

分析结果表明,建筑中电器设备和照明的碳排放量为 18.23 kgCO₂e/(m²·a)。鉴于电网的碳排放强度为 0.6835 kgCO₂e/kWh,且无法降低,这些建筑若未安装光伏面板,将无法达到《零碳建筑技术标准》定义的近零碳排放阈值(见表 4)。表 5 展示了受建筑改造措施影响的结果,重点关注暖通空调与生活热水系统的碳排放。包括电器设备和照明碳排放在内的完整结果则见表 6。

表 5: 在既定措施下,考虑暖通空调与生活热水系统的建筑层面分析模拟结果 (单位: kgCO2e/(m²a))

196 Hgh	年;	建筑类	型地点	基准值	措施一	措施二	措施三	措施四	措施五	措施六	措施七	措施八	措施力.	措施十	音施十一	措施十二
1986 Low 北京 113 157 95 164 113 2287 337 151 86 156 104 229 347 338 1398 Th 北京 129 129 120 10.8 4.8 4.8 9.3 9.5 7.7 10.8 9.3 9.2 -10.7 1.8 1.9				35.2												
3 986 日本 上京 127 127 127 121 141 -680 -760 124 119 209 113 -692 -770 14 199 199 113 -692 -770 14 199 199 12 120 103 -80 -9.3 9.5 7.7 10.8 9.3 9.2 -10.7 18 18 12 12 12 12 12 12	1 1986	HighT	北京	32.3	13.6	9.1	14.3	10.6	6.8	3.1	12.5	7.7	13.2	9.3	5.7	1.8
4 1995 High	2 1986	Low	北京	32.8	15.7	9.5	16.4	11.3	-28.7	-33.7	15.1	8.6	15.6	10.4	-29.5	-34.7
5 195 HghT 北京 156 157 128 113 106 68 31 12.5 77 14.12 9.3 5.7 1.8 6 195 Low 北京 北京 15.6 12.5 15.8 11.3 32.3 33.8 10.2 8.5 11.8 10.3 33.3 34.8 8 2010 Hght 北京 17.8 11.6 9.1 11.2 10.7 -7.2 -9.3 10.4 7.7 11.7 9.3 -8.4 -10.7 10 2010 Hght 北京 17.8 11.8 9.1 12.9 10.6 5.4 3.1 10.7 7.7 11.7 9.3 -8.4 -10.7 10 2010 Low 北京 17.8 11.8 9.1 12.9 10.6 5.4 3.1 10.7 7.7 11.7 9.3 -8.4 -10.7 10 2010 Low 北京 17.9 11.4 9.4 13.0 11.3 -32.1 -33.8 10.5 8.5 12.0 10.3 -33.1 -34.8 11 2011 Th 北京 12.9 9.6 9.1 11.2 10.7 -4.9 -9.3 8.3 7.6 9.8 9.3 -10.2 -10.7 13 2018 Hght 北京 12.9 9.6 9.1 11.1 10.6 3.6 3.1 8.4 7.7 9.8 9.2 2.3 1.7 14 2015 Low 北京 13.7 12.4 13.8 13.8 -75.3 -76.2 12.9 11.6 13.8 12.8 -75.3 -77.4 15 2018 Th 北京 12.9 9.6 9.1 11.1 10.6 3.6 3.1 8.4 7.7 9.8 9.2 2.3 1.7 15 2018 Th 北京 12.9 9.6 9.1 11.1 10.6 3.6 3.1 8.4 7.7 9.8 9.2 2.3 1.7 15 2018 Th 北京 12.9 9.6 9.1 11.1 10.6 3.6 3.1 8.4 7.7 9.8 9.2 2.3 1.7 15 2018 Th 北京 12.9 9.6 9.1 11.1 10.6 3.6 3.1 8.4 7.7 9.8 9.2 2.3 1.7 16 19 19 19 19 11.2 13.2 33.8 9.2 8.4 10.9 10.2 34.2 34.8 15 2018 Th 北京 12.9 13.8 11.0 15.5 12.7 2.3 3.5 13.9 9.9 11.6 13.8 12.8 -76.3 -77.4 16 19 19 19 19 19 19 19	3 1986	Th	北京	55.8	22.7	12.7	22.1	14.1	-68.0	-76.0	21.4	11.9	20.9	13.1	-69.2	-77.0
5 195 HghT 北京 156 9.1 143 106 6.8 3.1 12.5 7.7 11.2 9.3 5.7 1.8 6 1995 Low 北京 北京 15.6 12.5 16.3 11.3 32.3 33.8 10.2 8.5 11.8 10.3 33.3 34.8 32.0 34.8 32.0 34.8 32.0 34.8 32.0 34.8 34	4 1995	Highs	北京	22.9	10.7	9.1	12.0	10.8	-8.0	-9.3	9.5	7.7	10.8	9.3	-9.2	-10.7
6 1995 Low 北京 128 113 323 338 102 8.5 118 103 333 334 338 320 118 119 118 119 118 119 118 119 118 118 119 118 118 119 118 118 119 119 119 118 118 119 119 118 118 119 119 118 118 119 119 118 118 118 119 118 118 119 118 119 118 118 119 118 118 119 118 118 119 118 118 119 118 118 119 118 118 119 118 118 119 118 118 119 118 118 119 118 118 119 118	5 1995		北京	26.8	13.6	9.1	14.3	10.6	6.8	3.1	12.5	7.7	13.2	9.3	5.7	1.8
8 2010 High 北京 北京 17.8 11.6 9.1 12.8 10.7 -7.2 -9.3 10.4 7.7 11.7 9.3 -8.4 -10.7 9.2010 HighT 北京 17.8 11.8 9.1 12.9 10.6 5.4 3.1 10.7 7.7 11.8 9.2 4.3 1.7 10.010 Low 北京 17.9 11.4 9.4 13.9 11.3 -32.1 -33.8 10.5 8.5 12.0 10.3 -33.1 -34.8 11.2 11.2 10.0 Th 北京 5.5 14.7 12.4 15.7 13.9 -7.44 -7.62 13.3 10.6 14.6 12.8 -7.5 5 77.3 12.2018 HighT 北京 12.9 9.6 9.1 11.1 10.6 3.6 3.1 8.4 7.7 9.8 9.3 -10.2 -10.7 11.4 14.0 14.8 13.8 9.1 10.1 9.4 11.9 11.2 10.7 -8.9 9.3 8.3 7.6 9.8 9.3 -10.2 -10.7 11.4 14.0 15.0 12.8 14.8 13.8 11.0 1.0 9.4 11.9 11.2 10.7 -8.9 9.2 8.4 10.9 10.2 -34.2 -34.8 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0	6 1995	_	北京	22.5	11.2	9.5	12.8	11.3	-32.3	-33.8	10.2	8.5	11.8	10.3	-33.3	-34.8
9 2010 HighT 北京 17.8 11.8 9.1 12.9 10.6 5.4 5.1 10.7 7.7 11.8 9.2 4.3 1.7	7 1995	Th	北京	38.0	15.6	12.5	16.3	13.9	-73.8	-76.1	14.6	11.6	15.2	12.9	-74.9	-77.3
9 2010 HighT 北京 17.5 11.8 9.1 12.9 10.6 5.4 3.1 10.7 7.7 11.8 9.2 4.3 1.7 11.0 11.8 1.7 11.4 9.4 13.2 11.3 32.1 33.8 10.5 8.5 12.0 10.3 33.1 34.8 11.2 11.0 11.5	8 2010	Highs	北京	17.8	11.6	9.1	12.8	10.7	-7.2	-9.3	10.4	7.7	11.7	9.3	-8.4	-10.7
12 2010 Th 北京 132 9.6 9.1 11.2 10.7 8.9 9.3 8.3 7.6 9.8 9.3 1.02 1.07 1.3018 Highs 北京 132 9.6 9.1 11.1 10.6 3.6 3.1 8.4 7.7 9.8 9.3 1.02 1.07 1.3018 Highs 北京 12.9 9.6 9.1 11.1 10.6 3.6 3.1 8.4 7.7 9.8 9.2 2.3 1.7 1.4218 Low 北京 14.4 10.1 9.4 11.9 11.2 33.2 33.8 9.2 8.4 10.9 10.2 34.2 34.8 15.2018 Th 北京 12.9 12.4 14.8 13.8 -75.3 -76.2 12.9 11.6 13.8 12.8 -76.3 -77.4 17.966 Highs 16.7½ 15.8 11.0 18.5 12.7 2.3 3.5 17.9 9.9 17.8 11.7 1.6 4.5 17.946 Highs 16.7½ 15.1 10.1 11.0 18.9 12.6 12.9 6.5 18.6 9.9 18.2 11.6 12.1 5.5 18.96 1.6 18.3 11.9 18.5 13.9 18.0 22.5 17.6 11.4 17.8 13.1 18.7 -23.3 19.96 Th 16.7½ 13.3 11.9 18.5 13.9 18.0 22.5 17.6 11.4 17.8 13.1 18.7 -23.3 19.96 Th 16.7½ 13.5 13.4 19.1 10.0 15.1 12.7 -1.1 -3.5 13.4 9.9 13.8 11.6 12.1 5.5 12.9 13.8 13.9 13.9 13.9 13.9 13.4 19.9 13.8 11.6 9.7 5.5 12.999 13.8 11.6 9.7 5.5 12.999 13.9 13.9 13.0 13.4 13.4 19.9 13.8 11.6 9.7 5.5 13.0 13.9 13.0 13.4 1	9 2010		北京	17.8	11.8	9.1	12.9	10.6	5.4	3.1	10.7	7.7	11.8	9.2	4.3	1.7
12 2010 Th 北京 132 9.6 9.1 11.2 10.7 8.9 9.3 8.3 7.6 9.8 9.3 1.02 1.07 1.3018 Highs 北京 132 9.6 9.1 11.1 10.6 3.6 3.1 8.4 7.7 9.8 9.3 1.02 1.07 1.3018 Highs 北京 12.9 9.6 9.1 11.1 10.6 3.6 3.1 8.4 7.7 9.8 9.2 2.3 1.7 1.4218 Low 北京 14.4 10.1 9.4 11.9 11.2 33.2 33.8 9.2 8.4 10.9 10.2 34.2 34.8 15.2018 Th 北京 12.9 12.4 14.8 13.8 -75.3 -76.2 12.9 11.6 13.8 12.8 -76.3 -77.4 17.966 Highs 16.7½ 15.8 11.0 18.5 12.7 2.3 3.5 17.9 9.9 17.8 11.7 1.6 4.5 17.946 Highs 16.7½ 15.1 10.1 11.0 18.9 12.6 12.9 6.5 18.6 9.9 18.2 11.6 12.1 5.5 18.96 1.6 18.3 11.9 18.5 13.9 18.0 22.5 17.6 11.4 17.8 13.1 18.7 -23.3 19.96 Th 16.7½ 13.3 11.9 18.5 13.9 18.0 22.5 17.6 11.4 17.8 13.1 18.7 -23.3 19.96 Th 16.7½ 13.5 13.4 19.1 10.0 15.1 12.7 -1.1 -3.5 13.4 9.9 13.8 11.6 12.1 5.5 12.9 13.8 13.9 13.9 13.9 13.9 13.4 19.9 13.8 11.6 9.7 5.5 12.999 13.8 11.6 9.7 5.5 12.999 13.9 13.9 13.0 13.4 13.4 19.9 13.8 11.6 9.7 5.5 13.0 13.9 13.0 13.4 1	10 2010	Low	北京	17.9	11.4	9.4	13.0	11.3	-32.1	-33.8	10.5	8.5	12.0	10.3	-33.1	-34.8
13 2018 HighT 北京 北京 北京 129 96 9.1 11.1 10.6 3.6 3.1 8.4 7.7 9.8 9.2 2.3 1.7 14 2018 Low 北京 13.4 10.1 9.4 11.9 11.2 3.32 3.38 9.2 8.4 10.9 10.2 3.42 3.48 15.018 Th 北京 20.2 13.7 12.4 14.8 13.8 7.53 7.62 12.9 11.6 13.8 12.8 7.63 7.74 16.1986 Highs 中冷凉淡 13.6 18.8 11.0 18.5 12.7 2.3 3.5 17.9 9.9 17.8 11.7 1.6 4.5 17.1986 High 中冷凉淡 19.1 11.0 18.9 12.6 12.9 6.5 18.6 9.9 18.2 11.6 12.1 5.5 18.1986 Low 中冷淡 5.4 18.3 11.9 18.5 13.9 -18.0 -22.5 17.6 11.4 17.8 13.1 -18.7 -23.3 19.1986 Th 中冷冷淡 24.6 14.2 11.0 15.1 12.7 -1.1 -3.5 13.4 9.9 14.8 11.7 -1.9 -4.5 -4.5 19.9 12.6 10.5 6.5 15.1 9.9 15.8 11.6 9.7 5.5 12.1995 Low 中冷淡 24.4 11.0 15.1 12.7 -1.1 -3.5 13.4 9.9 14.8 11.7 -1.9 -4.5 -4.5 -4.6 10.5 -4.6 10.5 -5.5 13.9 11.4 15.2 13.2 -21.2 -23.2 -23.3 -2	11 2010	Th		25.0	14.7	12.4	15.7	13.9	-74.4	-76.2	13.7	11.6	14.6	12.8	-75.5	-77.3
13 2018 HighT 北京 北京 北京 129 96 9.1 11.1 10.6 3.6 3.1 8.4 7.7 9.8 9.2 2.3 1.7 14 2018 Low 北京 13.4 10.1 9.4 11.9 11.2 3.32 3.38 9.2 8.4 10.9 10.2 3.42 3.48 15.018 Th 北京 20.2 13.7 12.4 14.8 13.8 7.53 7.62 12.9 11.6 13.8 12.8 7.63 7.74 16.1986 Highs 中冷凉淡 13.6 18.8 11.0 18.5 12.7 2.3 3.5 17.9 9.9 17.8 11.7 1.6 4.5 17.1986 High 中冷凉淡 19.1 11.0 18.9 12.6 12.9 6.5 18.6 9.9 18.2 11.6 12.1 5.5 18.1986 Low 中冷淡 5.4 18.3 11.9 18.5 13.9 -18.0 -22.5 17.6 11.4 17.8 13.1 -18.7 -23.3 19.1986 Th 中冷冷淡 24.6 14.2 11.0 15.1 12.7 -1.1 -3.5 13.4 9.9 14.8 11.7 -1.9 -4.5 -4.5 19.9 12.6 10.5 6.5 15.1 9.9 15.8 11.6 9.7 5.5 12.1995 Low 中冷淡 24.4 11.0 15.1 12.7 -1.1 -3.5 13.4 9.9 14.8 11.7 -1.9 -4.5 -4.5 -4.6 10.5 -4.6 10.5 -5.5 13.9 11.4 15.2 13.2 -21.2 -23.2 -23.3 -2	12 2018	Highs	北京	13.2	9.6	9.1	11.2	10.7	-8.9	-9.3	8.3	7.6	9.8	9.3	-10.2	-10.7
14 2018 Low 北京 北京 14 4	13 2018		北京	12.9	9.6	9.1	11.1	10.6	3.6	3.1	8.4	7.7	9.8	9.2	2.3	1.7
16 1986 Highs 哈尔滨 15.6 18.8 11.0 18.5 12.7 2.3 3.5 17.9 9.9 17.8 11.7 1.6 4.5 17 18 1981 Low 哈尔滨 15.1 18.3 11.9 18.5 13.9 11.0 22.5 16.5 18.6 9.9 18.2 11.6 12.1 5.5 19 1986 The 哈尔滨 15.4 18.3 11.9 18.5 13.9 118.0 -22.5 17.6 11.4 17.8 13.1 18.7 2.33 19 1986 The 哈尔滨 24.6 14.2 11.0 15.1 12.7 -1.1 -3.5 13.4 9.9 14.3 11.7 -1.9 4.5 1998 HighT 哈尔滨 24.6 16.2 10.9 16.6 12.6 10.5 6.5 15.1 9.9 15.8 11.6 9.7 5.5 21 1995 Low 哈尔滨 24.4 16.2 10.9 16.6 12.6 10.5 6.5 15.1 9.9 15.8 11.6 9.7 5.5 22 1995 Low 哈尔滨 24.4 15.9 11.0 16.7 12.7 0.5 -3.5 13.4 9.9 15.8 11.6 9.7 5.5 24 2010 HighT 哈尔滨 24.4 15.9 11.0 16.7 12.7 0.5 -3.5 13.9 11.4 15.2 13.2 -21.2 -23.2 25 20 HighT 哈尔滨 24.4 15.9 11.0 16.7 12.7 0.5 -3.5 15.6 10.0 15.9 11.7 -0.3 -4.5 26 20 Uow 哈尔滨 24.6 16.3 10.9 16.9 12.6 10.8 6.5 15.6 10.0 16.1 11.6 10.0 5.5 27 20 The 哈尔滨 24.6 16.3 10.9 16.9 12.6 10.8 6.5 15.6 10.0 16.1 11.6 10.0 5.5 28 20 18 HighT 哈尔滨 24.6 16.3 10.9 16.9 12.6 10.8 6.5 15.6 10.0 16.1 11.6 10.0 5.5 29 20 18 HighT 哈尔滨 18.8 13.4 11.1 13.6 12.7 -1.5 -3.5 12.7 10.0 13.8 11.8 -2.4 -4.4 29 20 18 LighT EliphT Eliph	142018		北京	14.4	10.1	9.4	11.9	11.2	-33.2	-33.8	9.2	8.4	10.9	10.2	-34.2	-34.8
171986 HighT 哈尔滨 26.2 19.1 11.0 18.9 12.6 12.9 6.5 18.6 9.9 18.2 11.6 12.1 5.5 181986 Low 哈尔滨 24.1 18.3 11.9 18.5 13.9 -18.0 -22.5 17.6 11.4 17.8 13.1 -18.7 -23.3 201995 HighT 日本学 24.6 14.2 11.0 15.1 12.7 -1.1 -3.5 13.4 9.9 13.3 11.7 -1.9 -4.5 201995 Low 日本学 24.7 14.8 11.9 15.9 13.9 -20.5 -22.5 13.9 11.4 15.2 13.2 -21.2 -23.2 231995 Th 日本学 日本学 24.4 15.9 11.0 16.7 12.7 0.5 -3.5 15.2 10.0 15.9 11.7 -0.3 -4.5 24.2010 HighT 日本学 24.4 15.9 11.0 16.7 12.7 0.5 -3.5 15.2 10.0 15.9 11.7 -0.3 -4.5 25.2010 HighT 日本学 23.3 14.8 11.9 16.4 13.9 -20.1 -22.8 -22.5 13.9 16.1 11.4 15.6 13.2 -20.8 -22.5 27.2010 Th 日本学 23.3 14.8 11.9 16.4 13.9 -20.1 -22.8 -25.1 14.2 11.4 15.6 13.2 -20.8 -22.5 29.2018 HighT 日本学 23.3 14.8 11.1 14.6 12.7 -1.5 -3.5 12.7 10.0 13.8 11.8 -2.4 -4.4 29.2018 HighT 日本学 23.3 14.8 11.1 14.6 12.7 -1.5 -3.5 12.7 10.0 13.8 11.8 -2.4 -4.4 29.2018 HighT 日本学 25.201 14.2 12.3 15.6 14.0 -20.9 -22.4 13.6 11.2 14.9 13.3 -21.5 -23.1 31.2018 Th 日本学 13.2 -21.2 -23.1 -	15 2018	Th	北京	20.2	13.7	12.4	14.8	13.8	-75.3	-76.2	12.9	11.6	13.8	12.8	-76.3	-77.4
171986 HighT 哈尔滨 26.2 19.1 11.0 18.9 12.6 12.9 6.5 18.6 9.9 18.2 11.6 12.1 5.5 181986 Low 哈尔滨 24.1 18.3 11.9 18.5 13.9 -18.0 -22.5 17.6 11.4 17.8 13.1 -18.7 -23.3 201995 HighT 日本学 24.6 14.2 11.0 15.1 12.7 -1.1 -3.5 13.4 9.9 13.3 11.7 -1.9 -4.5 201995 Low 日本学 24.7 14.8 11.9 15.9 13.9 -20.5 -22.5 13.9 11.4 15.2 13.2 -21.2 -23.2 231995 Th 日本学 日本学 24.4 15.9 11.0 16.7 12.7 0.5 -3.5 15.2 10.0 15.9 11.7 -0.3 -4.5 24.2010 HighT 日本学 24.4 15.9 11.0 16.7 12.7 0.5 -3.5 15.2 10.0 15.9 11.7 -0.3 -4.5 25.2010 HighT 日本学 23.3 14.8 11.9 16.4 13.9 -20.1 -22.8 -22.5 13.9 16.1 11.4 15.6 13.2 -20.8 -22.5 27.2010 Th 日本学 23.3 14.8 11.9 16.4 13.9 -20.1 -22.8 -25.1 14.2 11.4 15.6 13.2 -20.8 -22.5 29.2018 HighT 日本学 23.3 14.8 11.1 14.6 12.7 -1.5 -3.5 12.7 10.0 13.8 11.8 -2.4 -4.4 29.2018 HighT 日本学 23.3 14.8 11.1 14.6 12.7 -1.5 -3.5 12.7 10.0 13.8 11.8 -2.4 -4.4 29.2018 HighT 日本学 25.201 14.2 12.3 15.6 14.0 -20.9 -22.4 13.6 11.2 14.9 13.3 -21.5 -23.1 31.2018 Th 日本学 13.2 -21.2 -23.1 -	16 1986	Highs	哈尔滨	35.6	18.8	11.0	18.5	12.7	2.3	-3.5	17.9	9.9	17.8	11.7	1.6	-4.5
18 1986 Low	17 1986	_		36.2	19.1	11.0	18.9	12.6	12.9	6.5	18.6	9.9	18.2	11.6	12.1	
19 1986 Th 中分深 24.6 14.2 11.0 15.1 12.7 -1.1 -3.5 13.4 9.9 14.3 11.7 -1.9 -4.5 11.9 19.5 11.9 11.9 11.6 12.6 10.5 6.5 15.1 9.9 15.8 11.6 9.7 5.5 12.9 12.9 12.9 12.9 12.0 12.8 13.2 -21.2 -23.2 13.9 11.4 15.2 13.2 -21.2 -23.2 13.9 11.4 15.2 13.2 -21.2 -23.2 13.9 11.4 15.2 13.2 -21.2 -23.2 13.9 11.4 15.2 13.2 -21.2 -23.2 13.9 11.4 15.2 13.2 -21.2 -23.2 13.9 11.4 15.2 13.2 -21.2 -23.2 13.9 11.4 15.2 13.2 -21.2 -23.2 13.9 11.4 15.2 13.2 -21.2 -23.2 13.9 11.4 15.2 13.2 -21.2 -23.2 13.9 11.4 15.2 13.2 -21.2 -23.2 13.9 11.4 15.2 13.2 -21.2 -23.2 13.9 11.4 15.2 13.2 -21.2 -23.2 13.9 11.4 15.2 13.2 -21.2 -23.2 13.9 11.4 15.2 13.2 -21.2 -23.2 13.9 11.4 15.6 13.2 -20.8 -2.5 12.0 11.1 11.7 -3.5 13.4 11.7 -3.5 13.4 11.7 -3.5 15.2 10.0 15.9 11.7 -3.3 -4.5 13.2 -2.0 -2.2 13.9 11.4 15.6 13.2 -2.0 -2.2 13.9 11.4 15.6 13.2 -2.0 -2.2 13.9 11.7 -3.3 -3.5 13.4 11.7 -3.5 13.6 13.9 -2.0 -2.2 -2.2 13.9 11.4 15.6 13.2 -2.0 -2.2 -2.2 13.9 13.8 13.2 -2.2		_			18.3	11.9	18.5	13.9	-18.0	-22.5	17.6	11.4	2000	13.1	-18.7	-23.3
1995 HighT 日本 日本 日本 日本 日本 日本 日本 日				61.0		16.6										A STATE OF THE PARTY OF THE PAR
21 1995 HighT	20 1995	Highs		24.6	14.2	11.0	15.1	12.7	-1.1	-3.5	13.4	9.9	14.3	11.7	-1.9	-4.5
22 1995 Low 哈尔滨 24.7																
23 1995 Th 哈尔滨 418 20.8 16.6 21.5 17.6 -51.4 -55.2 20.9 15.4 21.1 17.0 -51.7 -55.8 24 2010 Highs 哈尔滨 24.4 15.9 11.0 16.7 12.7 0.5 -3.5 15.2 10.0 15.9 11.7 -0.3 -4.5 25 2010 HighT 哈尔滨 24.6 16.3 10.9 16.9 12.6 10.8 6.5 15.6 10.0 16.1 11.6 10.0 5.5 26 20 10 Low 哈尔滨 23.3 14.8 11.9 16.4 13.9 -20.1 -22.5 14.2 11.4 15.6 13.2 -20.8 -22.5 27 2010 Th 哈尔滨 16.6 19.6 16.5 20.1 17.6 52.8 -55.2 18.9 16.1 19.4 17.0 -53.4 -55.8 29 2018 Highs 哈尔滨 18.7 13.6 11.0 14.7 12.6 8.6 6.6 12.7 10.0 13.8 11.8 -2.4 -4.4 2018 Highs 日本介文 20.1 14.2 12.3 15.6 14.0 -20.9 -22.4 13.6 11.2 14.9 13.3 -21.5 -23.1 31 2018 Th 哈尔滨 26.8 18.8 16.3 19.4 17.9 -53.4 -55.0 18.3 15.9 18.8 17.3 -54.0 -55.5 33 2001 Highs 上海 26.6 21.2 14.8 23.2 16.8 6.6 0.3 20.4 14.1 22.5 16.1 5.9 -0.5 33 2001 HighT 上海 31.1 22.1 15.3 24.2 17.3 18.0 11.0 21.4 14.5 23.5 16.5 17.3 10.3 34 2001 Low 上海 27.2 19.7 15.0 21.7 16.9 -15.6 -20.4 19.0 14.2 21.1 16.2 16.3 -21.1 39 2010 Th 上海 28.7 21.2 14.8 23.2 16.8 6.6 0.3 20.4 14.1 22.5 16.1 5.9 -0.5 33 2001 Highs 上海 28.7 21.2 14.8 23.2 16.8 6.6 0.3 20.4 14.1 22.5 16.1 5.9 -0.5 33 2001 Highs 上海 28.6 19.7 15.0 21.7 16.9 -15.6 -20.4 19.0 14.2 21.1 16.2 16.3 -21.1 35 2001 Th 上海 28.6 19.7 15.0 21.7 16.9 -15.6 -20.4 19.0 14.2 21.1 16.2 16.3 -21.1 39 2010 Th 上海 28.6 19.7 15.0 21.7 16.9 -15.6 -20.4 19.0 14.2 21.1 16.2 16.3 -21.1 39 2010 Th 上海 28.6 19.7 15.0 21.7 16.9 -15.6 -20.4 19.0 14.2 21.1 16.2 16.3 -21.1 39 2010 Th 上海 28.6 19.7 15.0 21.7 16.9 -15.6 -20.4 19.0 14.2 21.1 16.2 16.3 -21.1 39 2010 Th 上海 28.6 19.7 15.0 21.7 16.9 -15.6 -20.4 19.0 14.2 21.1 16.2 16.3 -21.1 39 2010 Th 上海 36.1 24.4 19.5 26.4 21.5 48.3 -53.1 23.5 18.6 25.5 20.6 49.1 -53.9 40 2003 Highs 深圳 20.6 16.4 16.3 17.2 17.0 -23.6 -23.8 15.4 15.1 15.2 16.0 15.9 -24.7 -24.9 43 2003 Th 深圳 20.6 16.4 16.3 17.2 17.0 -23.6 -23.8 15.4 15.1 15.2 15.9 -24.7 -24.9 43 2003 Th 深圳 20.6 16.4 16.3 17.2 17.0 -1.0 -1.2 15.2 14.9 16.0 15.8 -2.1 -2.4		-		24.7	14.8	11.9		13.9	-20.5					13.2		-23.2
24 24 24 24 25 24 25 24 25 24 25 24 25 24 25 24 25 24 25 24 25 24 25 24 25 24 25 24 25 24 25 24 25 24 25 24 25 25																
25 2010 HighT 哈尔滨 24.6 16.3 10.9 16.9 12.6 10.8 6.5 15.6 10.0 16.1 11.6 10.0 5.5 26 2010 Low 哈尔滨 23.3 14.8 11.9 16.4 13.9 -20.1 -22.5 14.2 11.4 15.6 13.2 -20.8 -22.5 27 2010 Th 哈尔滨 36.6 19.6 16.5 20.1 17.6 -52.8 -55.2 18.9 16.1 19.4 17.0 -53.4 -55.8 28 2018 HighT 哈尔滨 18.8 13.4 11.1 14.6 12.7 -1.5 -3.5 12.7 10.0 13.8 11.8 -2.4 -4.4 49 2018 HighT 哈尔滨 18.8 13.4 11.1 14.6 12.7 -1.5 -3.5 12.7 10.0 13.8 11.8 -2.4 -4.4 -4.4 30 2018 Low 哈尔滨 26.8 6.6 6.6 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>11.7</td><td></td><td></td></t<>														11.7		
26 2010 Low 哈尔滨 23.3 14.8 11.9 16.4 13.9 -20.1 -22.5 14.2 11.4 15.6 13.2 -20.8 -22.5 17.2 17.0 17.6 17.0 1						10.9		12.6	10.8			10.0				
27 2010 Th 哈尔滨 哈尔滨 B 18.8 36.6 19.6 16.5 20.1 17.6 -52.8 -55.2 18.9 16.1 19.4 17.0 -53.4 -55.8 28 2018 HighT G 尔滨 B 2018 HighT G R R R R R R R R R R R R R R R R R R		-				0.000										
18.8 13.4 11.1 14.6 12.7 -1.5 -3.5 12.7 10.0 13.8 11.8 -2.4 -4.4		Th				16.5								17.0		00/0/0-
18.7 13.6 11.0 14.7 12.6 8.6 6.6 12.7 10.0 13.8 11.6 7.8 5.6														/ = //	100000000000000000000000000000000000000	100000
30 2018 Low 哈尔滨 20.1 14.2 12.3 15.6 14.0 -20.9 -22.4 13.6 11.2 14.9 13.3 -21.5 -23.1 31.2018 Th 哈尔滨 26.6 12.2 14.8 23.2 16.8 6.6 0.3 20.4 14.1 22.5 16.1 5.9 -0.5 32.2011 Highs 上海 26.6 21.2 14.8 23.2 16.8 6.6 0.3 20.4 14.1 22.5 16.1 5.9 -0.5 33.2001 Low 上海 27.2 19.7 15.0 21.7 16.9 15.6 -20.4 19.0 14.2 21.1 16.2 16.3 -21.1 35.2001 Th 上海 40.9 28.4 19.6 30.4 21.6 -44.2 -53.0 27.5 18.7 29.5 20.7 -45.0 -53.9 36.2010 Highs 上海 28.7 21.2 14.8 23.2 16.8 6.6 0.3 20.4 14.1 22.5 16.1 5.9 -0.5 37.2010 Highs 上海 28.7 21.2 14.8 23.2 16.8 6.6 0.3 20.4 14.1 22.5 16.1 5.9 -0.5 37.2010 Highs 上海 28.7 21.2 14.8 23.2 16.8 6.6 0.3 20.4 14.1 22.5 16.1 5.9 -0.5 37.2010 Highs 上海 28.6 19.7 15.0 21.7 16.9 15.6 -6.6 0.3 20.4 14.1 22.5 16.1 5.9 -0.5 37.2010 Highs 上海 28.6 19.7 15.0 21.7 16.9 15.6 -20.4 19.0 14.2 21.1 16.2 16.3 -21.1 39.2010 Th 上海 31.1 22.1 15.3 24.2 17.3 18.0 11.0 21.4 14.5 23.5 16.5 17.3 10.3 38.2010 Low 上海 28.6 19.7 15.0 21.7 16.9 -15.6 -20.4 19.0 14.2 21.1 16.2 16.3 -21.1 39.2010 Th 上海 31.0 21.7 16.9 -15.6 -20.4 19.0 14.2 21.1 16.2 16.3 -21.1 39.2010 Th 上海 28.6 19.7 15.0 21.7 16.9 -15.6 -20.4 19.0 14.2 21.1 16.2 16.3 -21.1 39.2010 Th 上海 28.6 19.7 15.0 21.7 16.9 -15.6 -20.4 19.0 14.2 21.1 16.2 16.3 -21.1 39.2010 Th 上海 28.6 19.7 15.0 21.7 16.9 -15.6 -20.4 19.0 14.2 21.1 16.2 16.3 -21.1 39.2010 Th 上海 30.2010 Th 12.0010 Th 12							-	1092393								10000
State Sta		_		100000000000000000000000000000000000000			7.17.1						Telefolds			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
32 2001 Highs 上海 26.6 21.2 14.8 23.2 16.8 6.6 0.3 20.4 14.1 22.5 16.1 5.9 -0.5						5500/50						100000000		1000000		50000000
33 2001 HighT 上海 311 22.1 15.3 24.2 17.3 18.0 11.0 21.4 14.5 23.5 16.5 17.3 10.3 34 2001 Low 上海 27.2 19.7 15.0 21.7 16.9 -15.6 -20.4 19.0 14.2 21.1 16.2 16.3 -21.1 35 2001 Th 上海 40.9 28.4 19.6 30.4 21.6 -44.2 -53.0 27.5 18.7 29.5 20.7 -45.0 -53.9 36 2010 Highs 上海 28.7 21.2 14.8 23.2 16.8 6.6 0.3 20.4 14.1 22.5 16.1 5.9 -0.5 37 2010 HighT 上海 31.1 22.1 15.3 24.2 17.3 18.0 11.0 21.4 14.5 23.5 16.5 17.3 10.3 38 2010 Low 上海 28.6 19.7 15.0 21.7 16.9 -15.6 -20.4 19.0 14.2 21.1 16.2 16.3 -21.1 39 2010 Th 上海 36.1 24.4 19.5 26.4 21.5 -48.3 -53.1 23.5 18.6 25.5 20.6 -49.1 -53.9 40 2003 Highs 深圳 21.7 16.5 16.2 17.3 17.1 -0.9 -1.1 15.3 15.0 16.2 15.9 -2.0 -2.3 41 2003 Low ※											200000000000000000000000000000000000000	C-10000				The second second
34 2001 Low 上海 27.2 19.7 15.0 21.7 16.9 -15.6 -20.4 19.0 14.2 21.1 16.2 16.3 -21.1 35 2001 Th 上海 40.9 28.4 19.6 30.4 21.6 -44.2 -53.0 27.5 18.7 29.5 20.7 -45.0 -53.9 36 2010 Highs 上海 28.7 21.2 14.8 23.2 16.8 6.6 0.3 20.4 14.1 22.5 16.1 5.9 -0.5 37 2010 High 上海 28.6 19.7 15.0 21.7 16.9 -15.6 -20.4 19.0 14.2 23.5 16.5 17.3 10.3 38 2010 Low 上海 28.6 19.7 15.0 21.7 16.9 -15.6 -20.4 19.0 14.2 23.5 16.5 17.3 10.3 39 2010 Th 上海 361 24.4 19.5 26.4 21.5 -48.3 -53.1 23.5 18.6 25.5 20.6 -49.1 -53.9 40 2003 Highs 深圳 21.7 16.5 16.2 17.3 17.1 -0.9 -1.1 15.3 <t< td=""><td></td><td>-</td><td></td><td>100000000000000000000000000000000000000</td><td></td><td></td><td></td><td>The second second</td><td>2000</td><td></td><td>100000000000000000000000000000000000000</td><td></td><td></td><td>offere.</td><td>10000000</td><td>1000000</td></t<>		-		100000000000000000000000000000000000000				The second second	2000		100000000000000000000000000000000000000			offere.	10000000	1000000
35 2001 Th 上海 409 28.4 19.6 30.4 21.6 -44.2 -53.0 27.5 18.7 29.5 20.7 -45.0 -53.9 36 2010 Highs 上海 28.7 21.2 14.8 23.2 16.8 6.6 0.3 20.4 14.1 22.5 16.1 5.9 -0.5 37 2010 HighT 上海 31.1 22.1 15.3 24.2 17.3 18.0 11.0 21.4 14.5 23.5 16.5 17.3 10.3 38 2010 Low 上海 28.6 19.7 15.0 21.7 16.9 -15.6 -20.4 19.0 14.2 21.1 16.2 16.3 -21.1 39 2010 Th 上海 61 24.4 19.5 26.4 21.5 -48.3 -53.1 23.5 18.6 25.5 20.6 -49.1 -53.9 40 2003 Highs 深圳 21.7 16.5 16.2 17.3 17.1 -0.9 -1.1 15.3 15.0 16.2 15.9 -2.0 -2.3 41 2003 Low 深圳 20.6 16.4 16.3 17.2 17.0 -23.6 -23.8 15.4 15.1 16.2 15.9 -24.7 -24.9 43 2003 Th 深圳 23.6 18.9 18.6 19.7 19.4 -62.0 -62.4 17.7 17.3 18.4 18.1 -63.2 -63.6 44 2012 Highs 深圳 20.9 16.4 16.1 17.2 17.0 -1.0 -1.2 15.2 14.9 16.0 15.8 -2.1 -2.4		-							The second second		7-40-10-1					THE RESERVE AND ADDRESS OF THE PARTY OF THE
36 2010 Highs 上海 28.7 21.2 14.8 23.2 16.8 6.6 0.3 20.4 14.1 22.5 16.1 5.9 -0.5 37 2010 HighT 上海 31.1 22.1 15.3 24.2 17.3 18.0 11.0 21.4 14.5 23.5 16.5 17.3 10.3 38 2010 Low 上海 28.6 19.7 15.0 21.7 16.9 -15.6 -20.4 19.0 14.2 21.1 16.2 16.3 -21.1 39 2010 Th 上海 36.1 24.4 19.5 26.4 21.5 -48.3 -53.1 23.5 18.6 25.5 20.6 -49.1 -53.9 40 2003 Highs 深圳 21.7 16.5 16.2 17.3 17.1 -0.9 -1.1 15.3 15.0 16.2 15.9 -2.0 -2.3 42 2003 Low 深圳 23.4 16.5 16.3 17.4 17.2 10.6 10.4 15.4 15.2 16.3 16.1 9.5 9.2 42 2003 Low 深圳 20.6 16.4 16.3 17.2 17.0 -23.6 -23.8 15.4 15.1 16.2 15.9 -24.7 -24.9 43 2003 Th 深圳 23.6 18.9 18.6 19.7 19.4 -62.0 -62.4 17.7 17.3 18.4 18.1 -63.2 -63.6 44 2012 Highs 深圳 20.9 16.4 16.1 17.2 17.0 -1.0 -1.2 15.2 14.9 16.0 15.8 -2.1 -2.4				100000000000000000000000000000000000000		The second second								The state of the s	-	
37 2010 HighT 上海 31.1 22.1 15.3 24.2 17.3 18.0 11.0 21.4 14.5 23.5 16.5 17.3 10.3 13.0 10.0 14.2 10.0 14.2 11.1 16.2 16.3 -21.1 13.0 2010 Th 上海 16.1 24.4 19.5 26.4 21.5 -48.3 -53.1 23.5 18.6 25.5 20.6 -49.1 -53.9 40.2003 Highs HighT 深圳 21.7 16.5 16.2 17.3 17.1 -0.9 -1.1 15.3 15.0 16.2 15.9 -2.0 -2.3 41.2003 Low 深圳 23.4 16.5 16.3 17.4 17.2 10.6 10.4 15.4 15.2 16.3 16.1 9.5 9.2 42.2003 Low 深圳 20.6 16.4 16.3 17.2 17.0 -23.6 -23.8 15.4 15.1 16.2 15.9 -24.7 -24.9 43.2003 Th 深圳 23.6 18.9 18.6 19.7 19.4 -62.0 -62.4 17.7 17.3 18.4 18.1 -63.2 -63.6 44.2012 Highs 深圳 20.9 16.4 16.1 17.2 17.0 -1.0 -1.2 15.2 14.9 16.0 15.8 -2.1 -2.4							2 22 2									
38 2010 Low 上海 28.6 19.7 15.0 21.7 16.9 -15.6 -20.4 19.0 14.2 21.1 16.2 16.3 -21.1 39 2010 Th 上海 16.1 24.4 19.5 26.4 21.5 -48.3 -53.1 23.5 18.6 25.5 20.6 -49.1 -53.9 40 2003 Highs 深圳 21.7 16.5 16.2 17.3 17.1 -0.9 -1.1 15.3 15.0 16.2 15.9 -2.0 -2.3 41 2003 HighT 深圳 23.4 16.5 16.3 17.4 17.2 10.6 10.4 15.4 15.2 16.3 16.1 9.5 9.2 42 2003 Low 深圳 20.6 16.4 16.3 17.2 17.0 -23.6 -23.8 15.4 15.1 16.2 15.9 -24.7 -24.9 43 2003 Th 深圳 23.6 18.9 18.6 19.7 19.4 -62.0 -62.4 17.7 17.3 18.4 18.1 -63.2 -63.6 44 2012 Highs 深圳 20.9 16.4 16.1 17.2 17.0 -1.0 -1.2 15.2																
39 2010 Th 上海 161 24.4 19.5 26.4 21.5 -48.3 -53.1 23.5 18.6 25.5 20.6 -49.1 -53.9 40 2003 Highs 深圳 21.7 16.5 16.2 17.3 17.1 -0.9 -1.1 15.3 15.0 16.2 15.9 -2.0 -2.3 41 2003 HighT 深圳 23.4 16.5 16.3 17.4 17.2 10.6 10.4 15.4 15.2 16.3 16.1 9.5 9.2 42 2003 Low 深圳 20.6 16.4 16.3 17.2 17.0 -23.6 23.8 15.4 15.1 16.2 15.9 -24.7 -24.9 43 2003 Th 深圳 23.6 18.9 18.6 19.7 19.4 -62.0 -62.4 17.7 17.3 18.4 18.1 -63.2 -63.6 44 2012 Highs 深圳 20.9 16.4 16.1 17.2 17.0 -1.0 -1.2 15.2 14.9 16.0 15.8 -2.1 -2.4		_														
40 2003 Highs 深圳 21.7 16.5 16.2 17.3 17.1 -0.9 -1.1 15.3 15.0 16.2 15.9 -2.0 -2.3 41 2003 HighT 深圳 23.4 16.5 16.3 17.4 17.2 10.6 10.4 15.4 15.2 16.3 16.1 9.5 9.2 42 2003 Low 深圳 20.6 16.4 16.3 17.2 17.0 -23.6 -23.8 15.4 15.1 16.2 15.9 -24.7 -24.9 43 2003 Th 深圳 23.6 18.9 18.6 19.7 19.4 -62.0 -62.4 17.7 17.3 18.4 18.1 -63.2 -63.6 44 2012 Highs 深圳 20.9 16.4 16.1 17.2 17.0 -1.0 -1.2 15.2 14.9 16.0 15.8 -2.1 -2.4																
41 2003 HighT 深圳 23.4 16.5 16.3 17.4 17.2 10.6 10.4 15.4 15.2 16.3 16.1 9.5 9.2 42 2003 Low 深圳 20.6 16.4 16.3 17.2 17.0 -23.6 -23.8 15.4 15.1 16.2 15.9 -24.7 -24.9 43 2003 Th 深圳 23.6 18.9 18.6 19.7 19.4 -62.0 -62.4 17.7 17.3 18.4 18.1 -63.2 -63.6 44 2012 Highs 深圳 20.9 16.4 16.1 17.2 17.0 -1.0 -1.2 15.2 14.9 16.0 15.8 -2.1 -2.4																
42 2003 Low 深圳 20.6 16.4 16.3 17.2 17.0 -23.6 -23.8 15.4 15.1 16.2 15.9 -24.7 -24.9 43 2003 Th 深圳 23.6 18.9 18.6 19.7 19.4 -62.0 -62.4 17.7 17.3 18.4 18.1 -63.2 -63.6 44 2012 Highs 深圳 20.9 16.4 16.1 17.2 17.0 -1.0 -1.2 15.2 14.9 16.0 15.8 -2.1 -2.4																
43 2003 Th 深圳 23.6 18.9 18.6 19.7 19.4 -62.0 -62.4 17.7 17.3 18.4 18.1 -63.2 -63.6 44 2012 Highs 深圳 20.9 16.4 16.1 17.2 17.0 -1.0 -1.2 15.2 14.9 16.0 15.8 -2.1 -2.4		_														
442012 Highs 深圳 20.9 16.4 16.1 17.2 17.0 -1.0 -1.2 15.2 14.9 16.0 15.8 -2.1 -2.4				100000000000000000000000000000000000000	100000									N. Carlotte		1 1000000
												Decom			11 00 00 V 00 00 00 00 00 00 00 00 00 00 0	10000000
45 2012 HighT 深圳 22.9 16.4 16.2 17.3 17.1 10.5 10.3 15.3 15.1 16.2 16.0 9.4 9.2	45 2012	HighT	深圳	22.9	16.4	16.2	17.3	17.1	10.5	10.3	15.3	15.1	16.2	16.0	9.4	9.2
46 2012 Low 深圳 19.8 16.3 16.2 17.1 17.0 23.7 23.9 15.3 15.1 16.1 15.9 24.8 25.0		-		A STATE OF THE STA		2000	47.040	100					275	400000		550,500,00
472012 Th 深圳 22.1 18.8 18.6 19.5 19.3 -62.2 -62.5 17.5 17.2 18.3 18.0 -63.4 -63.7							19.5				200000	17.2		12450		100000000000000000000000000000000000000

(翻译注:表中建筑类型缩写释义——HighS:高层板楼 (High-rise Slab), HighT:高层塔楼 (High-rise Tower),

Low: 低层住宅 (Low-rise), Th: 联排住宅 (Terraced house))

在表 5 和表 6 中,蓝色单元格表示符合中国零碳建筑标准中近零碳排放阈值(见表 4)的建筑。绿色单元格表示接近阈值且碳排放较低的建筑。黄色单元格表示碳排放中等的建筑,而红色单元格则突出显示碳排放较高的建筑。表 5 中展示的结果对于说明各项改造措施的有效性具有重要意义,而表 6 则显示每栋建筑是否达到了近零碳或净零碳排放目标。

表 6: 包含电器和照明排放的建筑尺度分析模拟结果 (单位: kgCO2e/(m²·a))

年到	建筑类	型地点	基准值	措施一	措施二	措施三	措施四	措施五	措施六	措施七	措施八	措施九	措施十扌	昔施十一	措施十二
0 1986	Highs	北京	53.6	34.7	27.6	34.8	29.2	14.7	9.2	33.8	26.1	33.8	27.8	13.8	7.8
1 1986	HighT	北京	50.7	32.0	27.5	32.7	29.0	25.2	21.5	30.9	26.1	31.6	27.7	24.1	20.2
2 1986	Low	北京	51.2	34.1	27.9	34.8	29.7	-10.3	-15.3	33.5	27.0	34.0	28.8	-11.1	-16.3
3 1986	Th	北京	74.2	41.1	31.1	40.5	32.5	-49.6	-57.6	39.8	30.3	39.3	31.5	-50.8	-58.6
4 1995	Highs	北京	41.3	29.1	27.5	30.4	29.2	10.4	9.1	27.9	26.1	29.2	27.7	9.2	7.7
5 1995	HighT	北京	45.2	32.0	27.5	32.7	29.0	25.2	21.5	30.9	26.1	31.6	27.7	24.1	20.2
6 1995	Low	北京	40.9	29.6	27.9	31.2	29.7	-13.9	-15.4	28.6	26.9	30.2	28.7	-14.9	-16.4
7 1995	Th	北京	56.4	34.0	30.9	34.7	32.3	-55.4	-57.7	33.0	30.0	33.6	31.3	-56.5	-58.9
8 2010	Highs	北京	36.2	30.0	27.5	31.2	29.1	11.2	9.1	28.8	26.1	30.1	27.7	10.0	7.7
9 2010	HighT	北京	36.2	30.2	27.5	31.3	29.0	23.8	21.5	29.1	26.1	30.2	27.6	22.7	20.1
10 2010	Low	北京	36.3	29.8	27.8	31.4	29.7	-13.7	-15.4	28.9	26.9	30.4	28.7	-14.7	-16.4
11 2010	Th	北京	43.4	33.1	30.8	34.1	32.3	-56.0	-57.8	32.1	30.0	33.0	31.2	-57.1	-58.9
12 2018	Highs	北京	31.6	28.0	27.5	29.6	29.1	9.5	9.1	26.7	26.0	28.2	27.7	8.2	7.7
13 2018	HighT	北京	31.3	28.0	27.5	29.5	29.0	22.0	21.5	26.8	26.1	28.2	27.6	20.7	20.1
14 2018	Low	北京	32.8	28.5	27.8	30.3	29.6	-14.8	-15.4	27.6	26.8	29.3	28.6	-15.8	-16.4
15 2018	Th	北京	38.6	32.1	30.8	33.2	32.2	-56.9	-57.8	31.3	30.0	32.2	31.2	-57.9	-59.0
16 1986	High	哈尔滨	54.0	17.2	29.4	36.9	31.1	20.7	14.9	36.3	28.3	36.2	30.1	20.0	13.9
17 1986	High.	哈尔滨	54.6	37.5	29.4	37.3	31.0	31.3	24.9	37.0	28.3	36.6	30.0	30.5	23.9
18 1986	Low	哈尔滨	53.8	36.7	30.3	36.9	32.3	0.4	-4.1	36.0	29.8	36.2	31.5	-0.3	-4.9
19 1986	Th	哈尔滨	79.4	46.9	35.0	45.2	36.0	-27.7	-36.8	45.9	34.2	44.3	35.3	-28.5	-37.5
20 1995	High	哈尔滨	43.0	32.6	29.4	33.5	31.1	17.3	14.9	31.8	28.3	32.7	30.1	16.5	13.9
21 1995	High.	哈尔滨	44.8	34.6	29.3	35.0	31.0	28.9	24.9	33.5	28.3	34.2	30.0	28.1	23.9
22 1995	Low	哈尔滨	43.1	33.2	30.3	34.3	32.3	-2.1	-4.1	32.3	29.8	33.6	31.6	-2.8	-4.8
23 1995	Th	哈尔滨	60.2	39.2	35.0	39.9	36.0	-33.0	-36.8	39.3	20.0	39.5	35.4	-33.3	-37.4
24 2010	High	哈尔滨		34.3	29.4	35.1	31.1	18.9	14.9	33.6	33.8	34.3	30.1	18.1	13.9
25 2010	High.	哈尔滨 哈尔滨	42.8 43.0	34.7	29.3	25.2	31.0	20.2	24.9	34.0	28.4	34.5	30.0	28.4	23.9
26 2010	Low	哈尔滨	41.7	22.7	30.3	34.8	_	-1.7	-4.1	32.6	28.4	34.0	31.6	-2.4	-4.1
27 2010	Th	哈尔滨	55.0	20.0			32.3	-34.4	-36.8			27.0	25.4	-35.0	-4.1
28 2018		哈尔滨	22.0	21.0	34.9 29.5	38.5		16.9		37.3 31.1	34.5	27.8	20.2	16.0	
	High	哈尔滨	27.2	31.8	29.3	33.0	31.1 31.0	27.0	14.9 25.0		28.4	32.2	20.0	26.2	24.0
29 2018	High.	哈尔滨	37.1	32.0	30.7	33.1	32.4		7715	31.1	28.4	32.2	30.0		
30 2018	Low	哈尔滨	28.3	32.6		34.0		-2.5	-4.0	32.0	-	33.3	31./	-3.1	-4.7
31 2018	Th	哈尔滨	45.2	37.2	34.7	57.8	36.3	-35.0	-36.6	36.7	34.3	37.2	33.7	-35.6	-37.1
32 2001	Highs	上海	45.0	39.6	33.2	41.6	53.2	25.0	18.7	38.8	32.3	40.9	34.5	24.3	17.9
33 2001	HighT	上海	49.5	40.5	33.7	42.6	33.7	36.4	29.4	39.8	32.9	41.9	34.9	35.7	28.7
34 2001	Low	上海	45.6	38.1	33.4	40.1	33.3	2.8	-2.0	37.4	32.6	39.5	34.6	34.7	-2.7
35 2001	Th	上海	59.3	46.8	38.0	48.8	40.0	-25.8	-34.6	45.9	37.1	47.9	39.1	-26.6	-35.5
36 2010	Highs	上海	47.1	39.6	33.2	41.6	33.2	25.0	18.7	38.8	32.3	40.9	34.3	24.3	17.9
37 2010	HighT	上海	49.5	40.5	33.7	42.6	35.7	36.4	29.4	39.8	32.9	41.9	34.9	35.7	28.7
38 2010	Low	上海	47.0	38.1	33.4	40.1	35.3	2.8	-2.0	37.4	32.6	39.5	34.6	34.7	-2.7
39 2010	Th	上海	54.5	42.8	37.9	44.8	39.9	-29.9	-34.7	41.9	37.0	43.9	39.0	-30.7	-35.5
40 2003	Highs	深圳	40.1	34.9	34.6	35.7	35.5	17.5	17.3	33.7	33.4	34.6	34.3	16.4	16.1
41 2003	HighT	深圳	41.8	34.9	34.7	35.8	35.6	29.0	28.8	33.8	33.6	34.7	34.5	27.9	27.6
42 2003	Low	深圳	39.0	34.8	34.7	35.6	35.4	-5.2	-5.4	33.8	33.5	34.6	34.3	-6.3	-6.5
43 2003	Th	深圳	42.0	37.3	37.0	38.1	37.8	-43.6	-44.0	36.1	35.7	36.8	36.5	-44.8	-45.2
44 2012	Highs	深圳	39.3	34.8	34.5	35.6	35.4	17.4	17.2	33.6	33.3	34.4	34.2	16.3	16.0
45 2012	HighT	深圳	41.3	34.8	34.6	35.7	35.5	28.9	28.7	33.7	33.5	34.6	34,4	27.8	27.6
46 2012	Low	深圳	38.2	34.7	34.6	35.5	35.4	-5.3	-5.5	33.7	33.5	34.5	34.3	-6.4	-6.6
47 2012	Th	深圳	40.5	37.2	37.0	37.9	37.7	-43.8	-44.1	35.9	35.6	36.7	36.4	-45.0	-45.3

根据表 6 所示的结果,所有基准建筑均未达到中国零碳建筑标准设定的性能水平。在各建筑类型中,联排住宅表现最差,基准碳排放最高。相比之下,采用措施 5、6、11 和 12(包括光伏面板集成)的模拟结果显示,低层住宅和联排住宅通常能够实现净零碳排放,这得益于光伏面板面积与总建筑面积的有利比例。然而,高层板楼和塔楼通常连近零碳排放的门槛都难以达到。

要实现净零碳排放,必须通过碳补偿来抵消剩余排放,尤其是建筑层面无法减少的部分。此外,电力系统脱碳对降低能源消耗的碳强度至关重要,这将确保长期净零目标的实现。

2.3 工作包 D: 超级街区分析

如图 8 所示,超级街区分析包括四个主要步骤:数据收集、数据处理、基线研究和情景分析。本工作包的目标是对所有可用的超级街区进行聚类处理,并识别具有代表性的典型超

级街区。一旦确定了代表性的超级街区,就会对其在包括基线在内的多种情景下进行模拟。随后,这些结果将用于下一工作包的区域的尺度扩大分析。

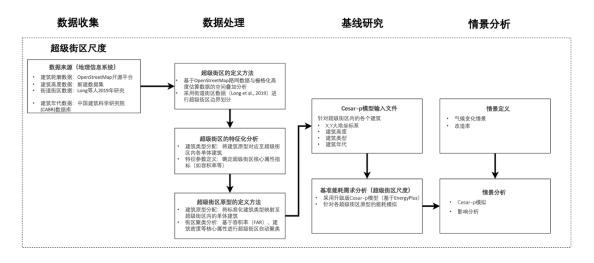


图 8: 超级街区层级分析的总体框架

2.3.2 数据收集与处理

在数据收集与处理阶段,目标是为每个城市收集所需数据,并应用 k-均值聚类将超级街区分类为不同的聚类,从中识别出代表性的原型超级街区。正如工作包A的数据可得性部分所述,进行超级街区层级分析所需的关键数据包括建筑年代、建筑轮廓、建筑高度和超级街区的分区情况。这些数据集的完整性对于进行可靠的超级街区层级分析至关重要。尽管可以通过人工补全、插值或其他分析方法弥补小范围的数据缺失,但如果数据缺失严重,将无法在所有超级街区和城市范围内开展全面的分析。

在本项目中,建筑高度数据是唯一完整的公开数据集。相比之下,建筑年代数据完全缺失,建筑占地面积数据也存在大量空缺。此外,并非所有街区都已在可用数据集中划分为超级街区。建筑年代数据的缺失是最严重的限制,因为这些数据既未公开,也无法通过其他来源获得。最终,中国建筑科学研究院仅为部分建筑提供了年代数据,因为对大范围开发区域进行人工数据采集并不可行。鉴于这些限制条件,选择性采样成为开展本项分析唯一可行的方法论,具体技术路线如图 9 所示。

图 9: 超级街区选择流程

将每个城市的建筑轮廓数据和超级街区数据合并后,划分为 5 公里×5 公里的网格。然后使用 Python 脚本在特定条件下进行半随机选择:如果某个网格单元没有超级街区数据、街区总面积小于该网格单元面积的 5%、或者在超级街区中没有建筑占地数据,则跳过该单元。此外,如果某超级街区的建筑占地总面积小于该超级街区面积的 5%,则该街区也被排除,因为这表明该区域的建筑占地面积可能严重缺失。最终被选中的超级街区信息被记录并以shapefile 格式保存,用于后续聚类分析。

选定的超级街区数据经复核后,仍存在部分建筑轮廓信息缺失的情况。由于采用了选择性方法,缺失的数据量较小,因此手动补全了这些数据。图 10 展示了两个建筑占地数据缺失的超级街区示例。

图 10: 补全建筑占地缺失数据

图 11 所展示的数据反映了在北京、哈尔滨、上海和深圳四座城市中被选取的超级街区的分布与密度情况。左上角的柱状图显示了每座城市中抽样的超级街区数量,其中北京样本数量最多(107个),其次是上海(58个)、深圳(42个)和哈尔滨(35个)。右上角的箱线图展示了各城市超级街区的密度分布,表明不同城市之间的密度差异。超级街区密度的计算方式是:将该街区内所有建筑的总建筑面积(包括各层楼面积之和)除以该街区的总面积。从图中可以看出,哈尔滨和上海的密度呈现出更宽的四分位间距,并存在多个离群值,说明其空间格局更加多样化。北京的超级街区密度最低(1.44),而深圳的最高(2.58)。

底部的堆叠柱状图进一步细化了每座城市中不同住宅建筑原型的分布情况。北京和哈尔滨拥有大量的低层住宅(分别为 45.8%和 40.9%); 而联排住宅在上海(58.6%)和哈尔滨(51.2%)占据主导地位。深圳(37.6%)和北京(30.5%)的高层板楼相对更多。相比之下,高层塔楼在四个城市的住宅建筑中占比都很小,在深圳和哈尔滨几乎没有出现。在北京和上海,高层塔楼仅占所有住宅建筑的约 1.2%。

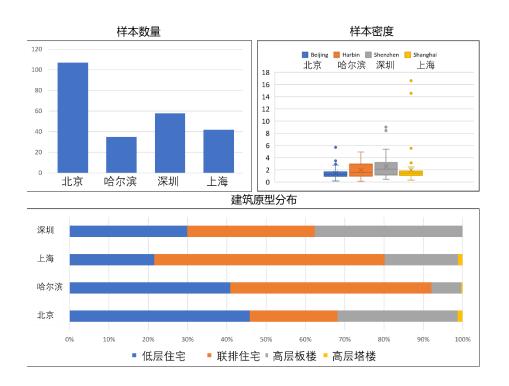


图 11: 所选超级街区的简单统计数据

为了进一步分析超级街区的空间特征并确定具有代表性的超级街区,本文采用了 k-均值聚类方法,根据形态和密度相关属性对超级街区进行分类。k-均值聚类因其方法简单、计算效率高而被广泛应用(lkotun 等, 2023)。该方法是一种以质心为基础的算法,通过迭代不断优化

聚类结果, 直至收敛到最终的分类结果。

聚类参数的选择主要依据那些影响超级街区空间构型的关键城市形态和密度指标。本文用于聚类分析的指标包括:超级街区内建筑的平均高度、超级街区的密度、建筑的年代、建筑的体形系数、建筑的高度与间距比、建筑的平均传热系数。经过多次试验发现,在所有参数中,聚类结果受以下三项因素影响最为显著:密度、体形系数、传热系数。

街区的建筑密度通过以下公式计算:

建筑物的紧凑度通过体形系数计算,体形系数简单来说是建筑外围护结构总面积与建筑物体积的比值:

建筑整体体形系数=建筑物的围护结构外表面积÷建筑物的体积

建筑物的年龄数据无法直接使用,因为 DeST 数据库中的建筑类型是基于时间区间分类的,使得年龄数据具有类别性质。建筑材料属性会随着时间发生变化。例如,在北京的案例中,有四个年龄类别: 1986 年、1995 年、2010 年和 2018 年。因此,年龄数据被分组到这些类别中。然而,k-均值聚类方法不能直接处理类别数据。为了应用 k-均值聚类方法,类别数据必须转换为数值形式,通常通过独热编码 (one-hot encoding) 来创建哑变量 (二进制变量)。但 k-均值聚类对类别变量非常敏感,如果包含类别参数,聚类结果可能会被这些类别不成比例地影响。为避免这一问题,选择了与建筑年龄密切相关的传热系数(老建筑通常具有较高的传热系数)作为聚类参数,代替使用年龄数据。超级街区的整体传热系数通过以下公式计算:

整体传热系数=(各外围护结构传热系数与其对应表面积的乘积之和)÷外围护结构总表面积 聚类分析结果如图 12 所示。由于北京可获取的数据量更大,其聚类结果相比其他城市更为 精细,各类别之间的区分度更为明显。具体而言,北京识别出 4 个聚类类别,哈尔滨 3 个, 上海和深圳各 2 个。最优聚类数量的确定通过反复试验实现,以确保数据分组具有明确的实 际意义。

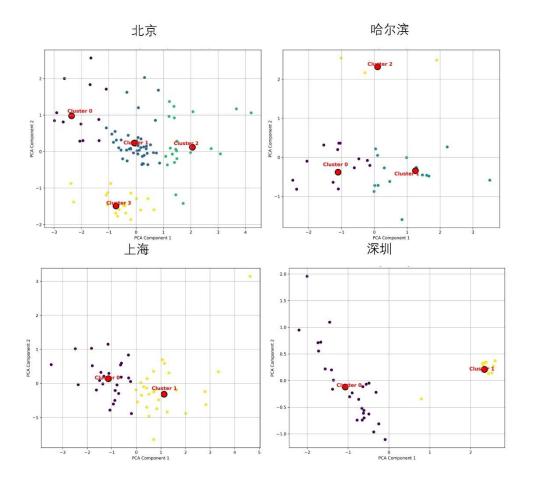


图 12: 基于主成分可视化的聚类分析

在确定了聚类和代表性超级街区后,进行了探索性数据分析,结果见图 13。

北京数据集包含 107 个样本, 分为 4 个聚类。聚类 0 代表高密度街区, 体形系数较低, 传热系数适中。聚类 1 的密度、体形系数和传热系数均为中等。聚类 2 密度最低, 体形系数最高, 传热系数最低。聚类 3 由中等密度街区组成, 体形系数适中, 但传热系数最高, 表明热性能较差。

哈尔滨数据集包含 35 个样本,分为 3 个聚类。聚类 0 代表高密度街区,体形系数较低,传热系数适中。聚类 1 密度最低,体形系数适中,传热系数最低。聚类 2 密度适中,体形系数高,传热系数最高,表明热性能较差。

上海数据集包含 58 个样本,分为 2 个聚类。聚类 1 代表高密度街区,体形系数较低,传热系数略高于聚类 0; 聚类 0 密度较低,体形系数较高,传热系数较低。

深圳数据集包含 36 个样本,分为 2 个聚类。聚类 1 由高密度、形状规则且传热系数略高的街区组成;聚类 0 包含密度较低、形状不规则且传热系数适中的街区。

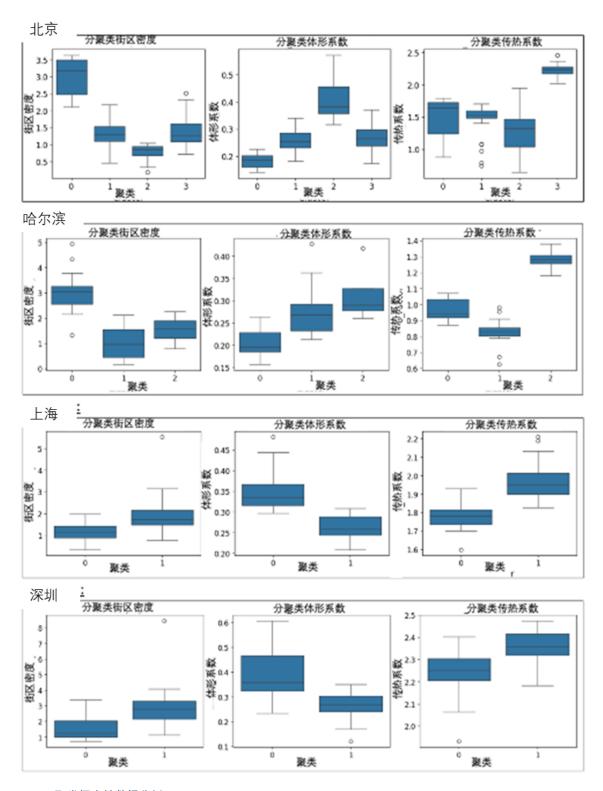


图 13: 聚类探索性数据分析

总体而言,所有数据集中高密度的聚类通常具有较低的体形系数和中等到较高的传热系数。 相比之下,低密度聚类(例如北京的聚类 2)往往具有中等到较高的体形系数和较低的传热 系数。 尽管存在数据局限性, k-均值聚类分析仍成功识别出密度、体形系数与传热系数的显著分布规律. 证实了该方法在捕捉建筑形态与热工特性差异方面的有效性。

北京——代表性超级街区

图 14 展示了选定的代表性超级街区,这些超级街区代表了北京的聚类结果。以下是每个代表性街区的一般信息说明:

图 14: 北京代表性聚类

北京聚类 0:

该聚类的代表性超级街区的街区密度约为 3.63, 表明该区域建筑密集。建筑中位高度为 35.9 米。该街区范围内分布有三栋建筑,总占地面积约为 7523 平方米,体形系数为 0.265,反映出建筑布局较为紧凑。根据 DeST 数据库的建筑类型,该街区建筑的建造时间根据传热系数分类为 1995 年。代表性超级街区的整体传热系数为 1.70 瓦每平方米开尔文,表明其热性能在北京代表性超级街区中处于中等水平。

北京聚类 1:

北京 Cluster 1 典型超级街区的地块密度约为 1.53, 表明其建筑环境密度低于 Cluster 0。该街区建筑中位高度为 11.55 米,属于低层建筑范畴。街区占地约 9728 平方米,分布有四栋建筑,体形系数为 0.332,显示其布局紧凑度适中。根据建筑年代数据,该街区建筑建于 1995至 2010年间,因此在 DeST 数据库建模中以 1995年作为统一建造年份。该典型超级街区的整体传热系数为 1.52 瓦每平方米开尔文,相较于北京其他典型超级街区表现出相对较好的热工性能。

北京聚类 2:

该聚类的代表性超级街区的街区密度约为 0.61, 建筑密度较低。建筑中位高度为 7 米, 主要为低层建筑。该街区范围内分布有三栋建筑, 总占地面积约为 12 029 平方米, 体形系数为 0.439, 表明布局较为分散。根据 DeST 数据库, 这些建筑的实际建造年份介于 1995 年至 2010 年间, 在建模过程中统一采用 1995 年作为建造时间。该超级街区的整体传热系数为 1.35 瓦每平方米开尔文, 是北京代表性超级街区中热性能最高的。

北京聚类 3:

该聚类的代表性超级街区的街区密度约为 1.27, 建筑密度适中。建筑中位高度为 18.3 米, 建筑高宽比为 1.22, 显示中层建筑且间距适中。该街区范围内分布有十栋建筑, 总占地面积约为 37 481 平方米, 体形系数为 0.279, 布局较为开阔。根据 DeST 数据库, 这些建筑的实际建造年份介于 1986 至 1995 年间, 在建模过程中统一采用 1986 年作为基准建造年代参数。该超级街区的整体传热系数为 2.34 瓦每平方米开尔文, 是北京代表性超级街区中热性能最低的。

哈尔滨——代表性超级街区

图 15 展示了选定的超级街区,代表了哈尔滨的超级街区聚类。以下是关于每个代表性街区的一般信息:

图 15: 哈尔滨代表性超级街区聚类

哈尔滨聚类 0:

该聚类的代表性超级街区的街区密度约为 3.18, 属于高密度建成区; 建筑高度中位数为 26.3

米,高宽比达 3.76,表明街区由间距较近的中高层建筑构成;在 15 496 平方米的用地范围内分布有六栋建筑,体形系数为 0.278,呈现紧凑布局特征。依据 DeST 数据库原型标准,该街区建筑年代判定为 2010 年。街区加权平均传热系数为 0.98 瓦每平方米开尔文,相较于同类超级街区处于中等热工性能水平。

哈尔滨聚类 1:

该聚类的代表性超级街区的街区密度约为 0.96, 属于中等密度建成环境;建筑高度中位数为 13.6 米;在约 35 721 平方米的用地范围内分布有 14 栋建筑,体形系数为 0.357,反映建筑 结构紧凑度适中。根据 DeST 数据库原型标准,该街区建筑年代判定为 1995 至 2010 年间,建模时采用 1995 年作为基准建造年份。街区整体传热系数为 0.89 瓦每平方米开尔文,其围 护结构热工性能为哈尔滨地区典型超级街区中的最优水平。

哈尔滨聚类 2:

该聚类的代表性超级街区的街区密度约为 1.35, 属于较高密度建成区; 建筑高度中位数为 12.6 米; 在 14 166 平方米用地范围内分布有 7 栋建筑, 体形系数达 0.368, 显示建筑群具有中等 紧凑度。根据 DeST 建筑数据库原型匹配结果, 该街区建筑年代判定为 1986 年前后, 建模时采用该年份作为基准参数。经加权计算, 街区整体传热系数为 1.37 瓦每平方米开尔文, 在对比样本中热工性能表现最差。

上海-代表性超级街区

图 16 展示了上海选定的代表性超级街区,这些街区代表了上海的聚类结果。以下是各代表性街区的一般信息说明:

图 16: 上海代表性超级街区聚类

上海聚类 0:

该聚类的代表性超级街区的街区密度约为 1.12、属于中等密度建成环境;建筑高度中位数为

10.4 米, 在约 29 548 平方米的用地范围内分布有 19 栋建筑, 体形系数为 0.411, 显示建筑群结构紧凑度适中。基于 DeST 数据库原型匹配结果, 该街区建筑年代判定为 2001 年前后, 建模时采用该年份作为基准参数。街区围护结构加权平均传热系数为 1.88 瓦每平方米开尔文, 反映了建筑的实际热工性能水平。

上海聚类 1:

该聚类的代表性超级街区的街区密度约为 1.81,属于较高密度建成环境;建筑高度中位数为 19.8 米,在约 64 524 平方米的用地范围内分布有 18 栋建筑;体形系数为 0.249,表明建筑结构相对舒展、布局较为开敞。根据 DeST 数据库原型匹配结果,该街区建筑年代判定为2001 年前后,建模时采用该年份作为基准参数。街区围护结构加权平均传热系数达 2.13 瓦每平方米开尔文,其保温性能低于聚类 0 的典型超级街区。

深圳-代表性超级街区

图 17 展示了深圳选定的代表性超级街区,这些街区代表了深圳的不同聚类。以下是各代表性街区的一般信息说明:

图 17: 深圳代表性超级街区聚类

深圳聚类 0:

该聚类的代表性超级街区的街区密度约为 1.40, 属于中等偏高密度建成区; 建筑高度中位数 为 13 米, 在约 56 381 平方米的用地范围内分布有 29 栋建筑, 体形系数为 0.359, 显示建筑 群具有中等紧凑度。基于 DeST 数据库原型匹配结果, 该街区建筑年代判定为 2003 年前后, 建模时采用该年份作为基准参数。经加权计算, 街区整体传热系数达 2.25 瓦每平方米开尔文, 表明其围护结构保温性能较差。

深圳聚类 1:

该聚类的代表性超级街区的街区密度约为 3.26、表明建筑环境密度较高。建筑高度中位数为

24.3 米,在 76 719 平方米用地范围内密集分布 45 栋建筑。体形系数 0.267 显示建筑布局相对舒展(长宽比均值 2.1:1)。根据 DeST 数据库原型匹配,该街区建筑年代判定为 2003 年前后,建模采用该年份作为基准参数。街区围护结构加权平均传热系数高达 2.35 瓦每平方米开尔文,热工性能显著劣于同期建筑标准要求。

2.3.3 基线和情景分析

在项目当前阶段,我们对选定的建筑聚类进行能耗模拟,计算其在基准条件及各情景方案下的能源需求。建筑基准参数通过 DeST 数据库获取,情景方案参数则基于建筑单体尺度分析结果确定。研究选取典型超级街区,模拟其在基准条件及六种情景方案(详见表 7)下的能耗表现,以评估其节能潜力与脱碳效能。

情景定义如下:基线情景(情景0)代表当前建筑状况。情景1包括100%提升的保温性能和受控遮阳(被动措施);情景2则聚焦于全方位采用空气源热泵结合光伏系统(主动措施)。情景3综合了情景1和情景2的所有措施,整合了被动和主动策略。情景4至情景7则是在情景0至情景3的基础上,加入了基于SSP2-4.5情景下的气候变化影响(该情景为中等排放路径,预计2100年全球气温升高约2.7℃)。这通过从当前参考气象数据生成未来天气文件实现,以反映预期的气候条件。这些情景调整了未来的温度、湿度及极端天气预报,用以评估建筑在气候变化下的长期适应能力。此外,各情景还在不同的电力碳强度(25%、50%和90%)下进行了评估,以分析电网脱碳的影响。

表 7: 针对能效提升的脱碳路径确定研究

#情景	地表包油	屋面	墙体	窗户系统	呼汤乏幼华小	光伏板	油四板	全球变暖
#旧京	地面保温	保温.	保温	升级	暖通系统优化	安装	遮阳构件	王琳艾唛
基线	-	-	-	-	-	-	-	-
情景 1	+	+	+	+	-	-	+	-
情景 2	-	-	-	-	+	+	-	-
情景 3	+	+	+	+	+	+	+	-
情景 4	-	-	-	-	-	-	-	+
情景 5	+	+	+	+	-	-	+	+
情景 6	-	-	-	-	+	+	-	+

脱碳分析从建筑层面扩大到超级街区和区域层面,重点关注典型超级街区。超级街区模拟结果用于识别哪些情景对各超级街区的能源需求和碳排放影响最大。表8展示了不包括电器和照明碳排放的模拟结果。

聚类	地点	基准值	情景一	情景二	情景三	情景四	情景五	情景六	情景七
0	北京	29.6	8.8	2.2	-8.7	28.2	10.4	3.2	-7.0
1	北京	28.0	8.4	-21.4	-31.8	26.8	9.8	-20.8	-30.3
2	北京	33.4	10.4	-69.2	-80.8	31.8	11.6	-69.2	-79.7
3	北京	23.9	9.3	-7.5	-15.3	23.5	10.6	-6.4	-13.9
0	哈尔滨	25.2	12.8	3.0	-3.5	23.1	12.7	2.4	-3.6
1	哈尔滨	29.4	12.1	-12.6	-21.6	26.4	11.9	-14.0	-21.9
2	哈尔滨	26.6	12.6	-11.3	-18.6	24.5	12.5	-12.2	-18.7
0	上海	23.1	14.6	-9.6	-18.2	22.1	16.1	-12.3	-18.6
1	上海	17.3	11.6	-0.3	-6.2	17.7	13.5	-1.3	-5.8
0	深圳	18.4	15.0	-16.1	-19.5	24.0	19.6	-12.2	-16.7
1	深圳	18.0	14.4	0.8	-2.8	23.3	18.3	5.2	0.2

表 8: 代表性超级街区在定义情景下的分析结果(不包括电器和照明的碳排放)(单位: kgCO2e/(m2a))

根据表 8 数据可见,所有情景方案的碳排放量均低于基准水平。采用最全面能效措施的方案 3 和方案 7 始终保持着最低的排放量,这反映出其作为最有效脱碳策略的优越性。暖通空调系统改进与光伏板结合的方案 2 和 6 展现出显著的减排效果。需要指出的是,仅考虑气候变暖影响的方案 4 对冷暖地区产生不同影响,由于制冷和供热需求的变化,深圳和上海甚至出现碳排放上升的情况。需要特别强调的是,包含气候变暖因素的情景仅用于评估建筑未来性能和气候适应性,不应被视为实际的脱碳策略。

城市专项分析

尽管表 8 仅展示了暖通空调与生活热水系统相关的排放结果,但它为评估各情景的有效性及 比较冷却主导区和供暖主导区的建筑性能提供了有价值的指标。

北京:

北京地区基准情景下的碳排放强度为 23.9 至 33.4 千克二氧化碳当量每立方米每年。其中,聚类 2 的典型超级街区表现最差,其较高的体形系数表明该区域以低层建筑和联排住宅为主。情景 2 (暖通系统升级+光伏板)实现显著减排效果,最低可达-69.9 kg 千克二氧化碳当量每立方米每年。聚类 2 的典型街区因建筑总面积较低且屋顶光伏安装空间充足,表现出优异的减排性能,其光伏板面积与总建筑面积比具有明显优势。相比之下,

聚类 0 (高层建筑集群) 在情景 2 中表现相对较弱,因其可供安装光伏的屋顶面积与建筑面积比较低。在仅考虑气候变暖影响的情景 4 中 (未叠加能效改造措施),碳排放量略有下降。这表明在全球变暖背景下,以供热为主的地区虽制冷负荷增加,但整体碳排放仍呈下降趋势。包含全面升级措施的情景 3 和 7 实现更显著的减排效果,碳排放强度降至-7.0 至-79.7 千克二氧化碳当量每立方米每年。

哈尔滨:

哈尔滨基准情景碳排放强度为 25.2-29.4 千克二氧化碳当量每立方米每年。情景 2(暖通系统升级+光伏)可使排放量降至-12.6 千克二氧化碳当量/立方米/年,而采用全面改造措施的情景 3 进一步降至-21.1 千克二氧化碳当量/立方米/年。相比之下,包含气候变化影响的情景 4、5、6、7 因全球变暖效应,减排幅度相对较小——气温上升虽降低供热需求,但增加了制冷能耗,导致整体减排效果存在波动。聚类 0 的典型超级街区表现出最优性能:建筑高度中位数 26.34 米,体形系数最低(0.278),整体传热系数 0.98 瓦每平方米开尔文。经围护结构改造后,各聚类性能趋于接近。在全面升级的情景 3 和 7 中,聚类 1 凭借较高的体形系数、较低的建筑高度及优越的光伏面积比,实现-21.9 千克二氧化碳当量每立方米每年的排放水平。在情景 4 中,基准建筑模型被置于气候变暖条件下进行模拟,结果显示超级街区的碳排放量随温度上升而降低。这一结果符合预期,因为哈尔滨地处严寒地区。

上海:

上海基准碳排放强度为 17.3-23.1 千克二氧化碳当量/立方米/年 (气候温和所致)。情景 2 (暖通升级+光伏) 实现最低-17.8 千克二氧化碳当量/立方米/年的排放水平, 情景 3 和 7 则展现最优减排效果。值得注意的是,含气候变暖因素的情景 4 导致聚类 1 典型街区排放量上升,聚类 0 也出现小幅增长。基准情景下,虽然聚类 0 传热系数较低(1.70 瓦每平方米开尔文),但聚类 1 凭借 19.8 米的建筑高度(聚类 0 为 10.4 米)及更优的体形系数(0.249-0.411)占据优势。而在情景 2、3、6、7 中,聚类 0 原本不利的体形系数(0.368)反而促成更高的光伏安装面积比,实现-18.6 千克二氧化碳当量/立方米/年。

深圳:

深圳基准碳排放强度为 18.0-18.4 千克二氧化碳当量/立方米/年。研究显示、暖通系统与

光伏升级措施效果显著: 情景 3 中, 聚类 0 典型超级街区实现最大减排量(-18.9 千克二氧化碳当量/立方米/年), 而采用全面升级措施的情景 7 效果更优。这印证了在深圳等高温高辐照地区, 暖通改造与光伏结合的协同减排效应。

基准情景下两类超级街区性能相近,但在实施光伏与暖通升级的情景中差异显著: 聚类 0 建筑高度中位数 13 米,体形系数 0.359;聚类 1 则分别为 24.3 米和 0.249。这种差异使得聚类 0 在多个情景中实现-15.8 至-18.9 千克二氧化碳当量/立方米/年的最优减排表现。

完整模拟结果(含电器与照明排放)见表 9。结果表明,尽管所采用措施未影响电器与照明的碳排放,但仅哈尔滨聚类 0 和深圳聚类 1 的典型超级街区在街区平均排放水平上未达到净零或近零碳排放阈值。其余所有典型超级街区均实现净零或近零碳排放。要进一步降低该层级的排放,需实现电网脱碳。

表 9: 代表性超级街区在定义情景下的分析结果(包含电器和照明的碳排放,单位: 千克二氧化碳当量/立方米/年)

聚类	地点	基准值	情景一	情景二	情景三	情景四	情景五	情景六	情景七 _
0	北京	47.9	27.1	20.5	9.7	46.5	28.7	21.6	11.4
1	北京	46.3	26.7	-3.0	-13.4	45.2	28.2	-2.4	-12.0
2	北京	51.8	28.8	-50.8	-62.4	50.2	30.0	-50.8	-61.4
3	北京	42.2	27.6	10.9	3.0	41.8	29.0	12.0	4.5
0	哈尔滨	43.5	31.2	21.4	14.9	41.4	31.0	20.7	14.7
1	哈尔滨	47.7	30.5	5.7	-3.2	44.7	30.3	4.4	-3.6
2	哈尔滨	45.0	31.0	7.0	-0.3	42.8	30.9	6.2	-0.4
0	上海	41.4	33.0	8.8	0.1	40.4	34.5	6.0	-0.2
1	上海	35.7	30.0	18.0	12.1	36.0	31.9	17.1	12.6
0	深圳	36.8	33.4	2.3	-1.1	42.3	38.0	6.2	1.6
1	深圳	36.4	32.8	19.2	15.6	41.6	36.6	23.5	18.5

如表 9 所示, 大多数超级街区在情景 2、3、6 和 7 下实现了近零碳排放或净零碳排放。然而, 要实现中国建筑存量的更深层次脱碳, 还需要采取更多措施, 特别是电力网的脱碳。表 10 展示了在电网碳排放降低 25%的情景下代表性超级街区的碳排放情况。电网的碳排放因子从 0.6835 kg CO₂eq/kWh 降低至 0.5126 kg CO₂eq/kWh。电网碳排放减少 25%显著降低了超级街区的碳排放水平, 在情景 3 下, 所有超级街区的平均碳排放均低于新零碳标准中提出的近零碳排放阈值。此外, 需要注意的是, 在涉及电网碳排放降低的情景中, 电力的碳强度下降。 因此, 屋顶光伏板所实现的减排效果也有所减弱, 因为光伏替代的电力本身碳排放强度较低。其余的碳排放可通过新零碳建筑标准中建议的方法进行抵消, 例如碳排放交易和绿色电力交

易等。

表 10: 在定义的情景下,电网碳排放降低 25%情况下,包含电器和照明的代表性超级街区分析结果(单位: 千克二氧化碳当量/立方米/年)

聚类	地点	基准值	情景一	情景二	情景三	情景四	情景五	情景六	情景七 ′
0	北京	42.0	21.7	15.3	7.2	39.8	22.8	16.1	8.4
1	北京	40.5	21.4	-2.4	-10.1	38.6	22.4	-1.9	-9.1
2	北京	45.9	23.3	-38.2	-46.9	43.5	24.0	-38.2	-46.1
3	北京	36.4	22.2	8.1	2.2	35.3	23.1	8.9	3.3
0	哈尔滨	38.1	26.0	15.9	11.1	35.6	25.5	15.4	11.0
1	哈尔滨	42.3	25.4	4.2	-2.5	38.9	24.8	3.2	-2.8
2	哈尔滨	39.6	25.9	5.2	-0.3	36.9	25.3	4.6	-0.4
0	上海	32.9	26.5	6.5	0.0	32.1	27.6	4.4	-0.3
1	上海	28.3	24.1	13.4	9.0	28.6	25.5	12.7	9.3
0	深圳	29.3	26.8	1.6	-0.9	33.4	30.2	4.5	1.1
1	深圳	29.0	26.3	14.3	11.6	32.9	29.2	17.6	13.8

为了反映由于电网脱碳带来的碳强度预期下降,并进一步降低建筑存量的碳排放,假设电网的碳排放因子减少 50%。结果显示当前和未来的碳排放均显著降低。然而,即使调整后的碳排放因子降至 0.34175 kgCO₂e/kWh,相关排放仍然相对较高,表明仍有进一步脱碳的潜力。假设电网脱碳 50%的模拟结果见表 11。

在电网减排最终情景中,假设电网碳排放强度降低 90% (结果见表 12)。正如预期,碳排放量显著下降。但要实现净零排放目标,仍需通过碳抵消措施或增加建筑光伏系统集成来消除剩余排放。

表 11: 在包含电器和照明的情景下,假设电网碳排放因子降低 50%的代表性超级街区分析结果(单位: 千克二氧化碳当量/立方米/年)

聚类	地点	基准值	情景一	情景二	情景三	情景四	情景五	情景六	情景七
0	北京	36.2	16.5	10.2	4.8	33.2	17.0	10.7	5.6
1	北京	34.8	16.1	-1.6	-6.8	32.2	16.7	-1.3	-6.0
2	北京	40.1	18.0	-25.5	-31.3	37.1	18.1	-25.5	-30.7
3	北京	30.7	16.9	5.4	1.4	28.8	17.2	5.9	2.2
0	哈尔滨	32.8	21.0	10.6	7.4	29.8	20.1	10.3	7.3
1	哈尔滨	37.1	20.4	2.8	-1.7	33.2	19.5	2.1	-1.8
2	哈尔滨	34.3	20.8	3.4	-0.2	31.2	19.9	3.0	-0.3
0	上海	24.4	20.2	4.3	0.0	23.9	20.9	3.0	-0.2
1	上海	21.1	18.3	8.9	6.0	21.3	19.2	8.5	6.2
0	深圳	21.9	20.2	1.1	-0.6	24.7	22.5	3.0	0.8
1	深圳	21.7	19.9	9.5	7.7	24.3	21.8	11.7	9.2

表 12: 在包含电器和照明的情景下,假设电网碳排放因子降低 90%的代表性超级街区分析结果(单位:千克二

聚类	地点	基准值	情景一	情景二	情景三	情景四	情景五	情景六	情景七
0	北京	26.8	8.0	2.0	1.0	22.6	7.7	2.1	1.1
1	北京	25.6	7.8	-0.3	-1.4	21.9	7.5	-0.3	-1.2
2	北京	30.9	9.5	-5.1	-6.3	26.7	8.7	-5.1	-6.1
3	北京	21.5	8.4	1.1	0.3	18.5	7.9	1.2	0.4
0	哈尔滨	24.3	13.0	2.1	1.5	20.6	11.5	2.1	1.5
1	哈尔滨	28.6	12.4	0.6	-0.3	24.0	10.9	0.4	-0.4
2	哈尔滨	25.9	12.8	0.7	0.0	21.9	11.2	0.6	-0.1
0	上海	10.9	10.1	0.9	0.0	10.7	10.1	0.6	0.0
1	上海	9.6	9.0	1.8	1.2	9.6	9.1	1.7	1.2
0	深圳	10.2	9.8	0.2	-0.1	10.6	10.2	0.6	0.2
1	深圳	10.1	9.7	1.9	1.5	10.5	10.0	2.3	1.8

2.5 工作包 E 和工作包 F——尺度扩大过程与情景分析

在项目当前阶段,研究团队利用聚类阶段建立的模型与模拟结果,对约1平方公里尺度的区域碳排放进行预测,以验证方法论的可扩大性。为此,我们从每个城市中选取一个区域。由于数据缺失(特别是建筑面积和街区数据不完整),区域选择工作仍需人工完成。虽然缺失的建筑轮廓区域可通过人工方式重建,但街道街区数据源自 Long 等人 2019 年的研究,无法在原始数据缺失的地区生成。以深圳为例,仅有少数区域的数据质量达标,即便如此,这些区域的建筑轮廓仍需人工补全。其余城市也存在数据量有限的问题。由于这些限制,尺度扩大区域只能通过人工方式选择,这成为研究过程中必不可少的步骤。

通过 GIS 空间分析,将包含高度与原型信息的建筑轮廓面图层与街区图层叠加整合。鉴于建筑年代数据不连续,假定研究区域内建筑年代均质化。根据中国建筑科学研究院(CABR)提供的建筑年代样本数据,选取与目标区域最接近的数据点,并假定该区域内建筑年代与之相同。继而计算每个超级街区的三个核心参数(密度、体形系数、整体传热系数),并将计算结果赋予对应的街区多边形。借助已训练的 k-均值聚类模型,预测各超级街区所属聚类类别。

基于聚类判定结果,结合表8至表12所示的碳排放数据,预测目标区域各超级街区在基准情景、气候变暖情景及不同改造组合情景(参见表7)下的碳排放表现。

2.5.1 北京-尺度扩大分析

如图 18 所示的研究区域及其超级街区聚类分布(图 19)位于北纬 39.92°、东经 116.46°,紧 邻市中心核心区。该区域包含 372 栋建筑,平均高度 15.57 米,总建筑面积 1,696,147 平方米,建筑基底总面积 263,897 平方米。区域内建筑原型呈现多元化特征:包括 81 栋高层板

楼、11 栋高层塔楼、169 栋低层建筑、109 栋联排住宅以及 2 栋基底面积超 3,000 平方米的商业建筑。这种建筑类型与高度的混合分布,为验证尺度扩大分析方法提供了代表性样本。

图 18: 选定的北京尺度扩大区域

北京市尺度扩大区域的超级街区聚类表示如图 19 所示。利用训练好的 k-均值模型对尺度扩大区域内的每个超级街区进行分类。该区域被划分为 67 个超级街区,其中聚类 0 有 8 个,聚类 2 有 5 个,聚类 3 有 52 个,另外有 2 个非住宅超级街区。大多数超级街区被归类为聚类 3,因此,该尺度扩大区域整体呈现较高的传热系数、中等的建筑密度和中等的体形系数特征。聚类 0 超级街区具有所有聚类中最高的密度和最低的体形系数,而聚类 2 则具有最低的密度和相应最高的体形系数。

图 19 展示了北京尺度扩大区域的超级街区聚类分布情况。研究采用经训练的 k-均值模型对该区域内 67 个超级街区进行分类,其中聚类 0 包含 8 个街区,聚类 2 包含 5 个街区,聚类 3 包含 52 个街区,另含 2 个非居住类特殊街区。由于绝大多数街区(77.6%)归属于聚类 3,该扩大区域整体呈现传热系数偏高、密度与体形系数中等的特征。相比之下,聚类 0 街区具有最高密度与最低体形系数,而聚类 2 街区则表现为最低密度与最高体形系数。

基于各超级街区的聚类归属,研究结合表 8 至表 12 的碳排放强度数据,根据表格数据乘以对应超级街区内建筑的总建筑面积,并对放大区域内的所有超级街区进行统一计算。最终将计算所得碳排放总量除以建筑总面积,得出单位建筑面积碳排放值(结果详见表 13)。

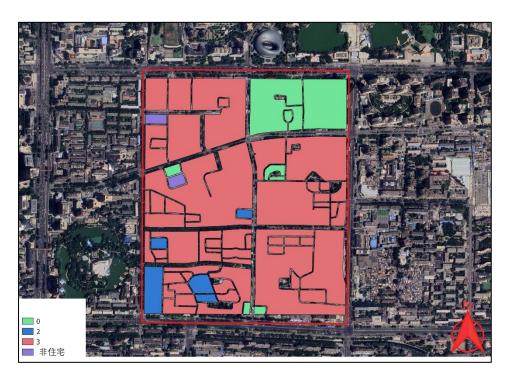


图 19: 尺度扩大后的北京超级街区聚类

表 13: 尺度扩大后的北京超级街区的碳排放量(单位: 千克二氧化碳当量/立方米/年)

	基线	情景 1	情景 2	情景 3	情景 4	情景 5	情景 6	情景7
暖通空调与生活热水系统	25.69	9.14	-5.65	-14.46	24.98	10.58	-4.58	-12.93
全技术措施	44.05	27.5	12.71	3.9	43.34	28.94	13.78	5.43
全技术措施+电网 脱碳 25%	38.19	22.07	9.45	2.86	36.75	23.03	10.24	3.99
全技术措施+电网 脱碳 50%	32.46	16.80	6.30	1.86	30.22	17.16	6.79	2.66
全技术措施+电网 脱碳 90%	23.20	8.30	1.26	0.40	19.83	7.85	1.36	0.50

商业建筑仅作为密度计算要素纳入评估(考虑其遮阳效应影响),但其体形系数与传热系数参数未参与计算。仅考虑暖通空调与生活热水系统时,尺度扩大区域在情景 2 和情景 3 中实现了净零碳排放。此外,受全球变暖影响,在情景 6 和情景 7 中也实现了净零排放。然而,若

将电器和照明的碳排放纳入考虑,碳排放水平虽然超过了净零碳排放标准,但仍低于零碳建筑标准中定义的近零碳排放阈值。

若仅关注暖通空调与生活热水系统,基准碳排放对气候变暖的敏感性较低,(仅减少了 3.5%,从 25.69 降至 24.98 千克二氧化碳当量/立方米/年)。但被动式技术的应用显著改变了这一关系:情景 1 使该系统排放量下降 64%(从 25.69 降至 9.14)。当气候变暖效应与节能措施协同作用时(情景 5),相较于变暖后的基准值,复合系统可实现 57.6%的减排效果(从 24.98 降至 10.58)。

情景 1 至情景 5 的碳排放增长主要源于两个因素: 首先, 建筑围护结构改善虽显著降低供暖负荷(情景 1 较基准情景实现大幅减排), 但气候变暖导致制冷负荷增幅超过供暖需求降幅; 其次, 建筑制冷系统依赖电力, 其碳排放因子约为天然气的 3 倍。当引入电网脱碳 90%的情景后, 因电力碳强度低于天然气, 碳排放量从情景 1 至情景 5 呈下降趋势。

2.5.2 哈尔滨 - 尺度扩大分析

图 20 与图 21 所示选定区域由 209 栋建筑构成,平均高度 17.49 米,总建筑面积 1,727,446 平方米,建筑基底总面积 238,983.78 平方米。区域内建筑类型多样,包括 64 栋高层板楼、123 栋低层建筑、13 栋联排住宅以及 9 栋基底面积超过 3,000 平方米的商业建筑。这种建筑类型与高度的混合分布特征,为尺度扩展方法评估提供了具有代表性的研究样本。

图 21 展示了哈尔滨尺度扩大区域的超级街区聚类分布。该区域位于北纬 45.72°、东经 126.64°的城区范围内,采用经训练的 k-均值模型对 36 个超级街区进行分类,其中聚类 0 包含 7 个街区,聚类 2 包含 27 个街区,另含 2 个非居住类特殊街区。

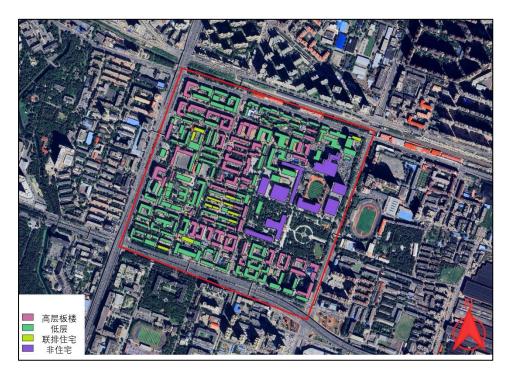


图 20: 选定的哈尔滨尺度扩大区域

大多数超级街区被归类为聚类 2; 因此,尺度扩大区域整体具有较高的传热系数、较低的密度以及最高的体形系数,表明建筑普遍为低层且传热系数较高。聚类 0 的超级街区在所有聚类中具有最高的密度和最低的体形系数,同时其传热系数处于中等水平。相比之下,聚类 2 的密度最低,相应地具有最高的体形系数。

图 21: 尺度扩大后的哈尔滨超级街区聚类

上述计算已应用于哈尔滨尺度扩大区域,用以计算该区域内建筑每平方米的碳排放量。结果见表 14。

表 14: 哈尔滨尺度扩大区域碳排放量(单位: 千克二氧化碳当量/立方米/年)

	基线	情景 1	情景 2	情景 3	情景 4	情景 5	情景 6	情景 7
暖通空调与生活热水系统	26.38	12.65	-9.09	-16.23	24.26	12.56	-9.87	-16.36
全技术措施	44.74	31.01	9.27	2.13	42.62	30.92	8.49	2.00
全技术措施+电网 脱碳 25%	39.36	25.92	6.88	1.49	36.70	25.33	6.30	1.39
全技术措施+电网 脱碳 50%	34.06	20.83	4.53	1.00	30.98	19.93	4.15	0.90
全技术措施+电网 脱碳 90%	25.65	12.83	0.92	0.24	21.70	11.25	0.84	0.15

在哈尔滨地区,气候变暖使暖通空调与生活热水系统的基准碳排放量降低了 8.0%(从 26.38 降至 24.26 千克二氧化碳当量/立方米/年)。这些暖通空调和热水系统对被动节能措施响应显著: 情景 1 中的遮阳和建筑围护结构改进,实现了 52%的减排(从 26.38 降至 12.65 千克二氧化碳当量/立方米/年)。当气候变暖效应与被动式节能策略协同作用时,暖通空调与生活热水系统的能效表现显著提升(从 24.26 降至 12.56 千克二氧化碳当量/平方米·年),较气候适应后的基准系统实现 48.2%的减排效果。

就暖通空调与生活热水系统而言,情景 1 和情景 5(被动措施 ± 全球变暖)之间的性能差异较小。虽然气温升高降低了供暖需求,但随之增加的制冷负荷部分抵消了排放减益。值得注意的是,这些制冷系统使用的电网电力碳强度是天然气的三倍(与北京的情况一致)。通过对比分析可见,情景 2、3、6 和 7 通过光伏和热泵的整合实现了暖通空调/生活热水排放的根本性降低: 情景 3 达到了-16.23 千克二氧化碳当量/立方米/年,情景 7 则达到-16.36 千克二氧化碳当量/立方米/年,这充分证明了在区域尺度推广应用中实现碳负排放的可行性。

在综合考量所有能耗系统的情况下,情景 3 和情景 7 的碳排放分别下降至 2.13 和 2.00 千克 二氧化碳当量/平方米·年。要实现净零排放,剩余排放需通过碳抵消或进一步增加光伏面板 来减少。另一方面,假设电网碳强度降低 90%,尺度扩大区域的碳排放将接近净零水平,仅 为 0.24 kgCO₂e/(m²·a)。

2.5.3 上海 — 尺度扩大分析

所选区域如图 22 所示,包含 427 栋建筑,平均高度为 25.64 米。该区域的总建筑面积为 2,873,263 平方米,总建筑基底面积为 269,576 平方米。区域内建筑类型多样,包括 66 栋高层板式建筑、62 栋高层塔楼、242 栋低层住宅、53 栋联排住宅,以及 4 栋基底面积均超过 3000 平方米的商业建筑。这种建筑类型与高度的混合分布,为尺度扩展方法评估提供了具有代表性的研究样本。

图 22: 上海尺度扩大区域选址

图 23 展示了上海尺度扩大区域的超级街区聚类情况。该尺度扩大区域位于 31.21°, 121.38°, 处于城市区内。使用训练好的 k-均值模型对尺度扩大区域内的每个超级街区进行了分类。该区域被划分为 33 个超级街区, 其中 9 个属于聚类 0, 24 个属于聚类 1。

大多数超级街区被归类为聚类 1, 因此整体尺度扩大区域表现出较高的密度、较低的体形系数和较高的传热系数, 这表明建筑物整体较为紧凑, 但围护结构性能较差。相比之下, 聚类

0 的超级街区具有较低的密度、较高的体形系数和较低的传热系数,代表一种更分散的城市形态,且围护结构性能相对较好。

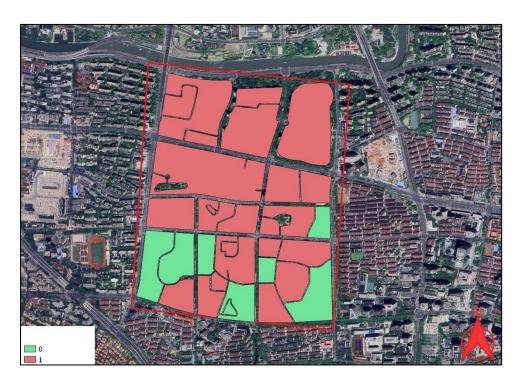


图 23: 尺度扩大后的上海超级街区聚类

尺度扩大区域的平均碳排放量按每平方米计算,结果见表 15。该尺度扩大区域基线情况下的平均暖通空调和生活热水碳排放为 17.95 kgCO₂e/(m²·a)。通过在场景 1 中应用被动措施,碳排放量降至 11.97 kgCO₂e/(m²·a),减少了 33.3%。在场景 2 中,随着建议的暖通空调系统的引入,在情景 3 中,通过实施围护结构性能提升、暖通空调系统优化及光伏板集成应用,平均碳排放强度降至负值区间,实现碳负排放。

表 15: 上海尺度扩大区域碳排放量 (单位: kgCO₂e/(m²·a))

	基线	情景 1	情景 2	情景 3	情景 4	情景 5	情景 6	情景7
暖通空调与生活 热水系统	17.95	11.97	-1.35	-7.56	18.15	13.80	-2.50	-7.20
全技术措施	36.31	30.33	17.01	10.8	36.51	32.16	15.86	11.16
全技术措施+电网 脱碳 25%	28.81	24.36	12.64	8.01	28.99	25.73	11.79	8.24

全技术措施+电网 脱碳 50%	21.46	18.51	8.39	5.34	21.59	19.39	7.89	5.49
全技术措施+电网 脱碳 90%	9.74	9.12	1.70	1.07	9.72	9.21	1.58	1.07

在情景 1 中,围护结构改进后,尺度扩大区域的建筑转变为明显的冷负荷主导型。当引入气候变暖变量,暖通空调与生活热水系统的单位面积年均碳排放量从 11.97 增加到 13.80 kgCO₂e/(m²·a),增长了 15.3%。对比分析显示,在气候变暖条件下(情景 6),情景 2 中以供暖为主导功能的建筑实现了暖通空调与生活热水系统的净负碳排放,排放强度达到-2.50 kgCO₂e/(m²·a)。

情景 3 与情景 7 的暖通空调和生活热水碳排放模式与情景 1 与情景 5 类似。当全面实施节能措施(情景 3)时,研究区域内暖通空调与生活热水系统整体呈现净冷负荷主导特性。在此情况下, 气候变暖效应使系统碳排放强度由-7.56 kgCO₂e/(m²·a)微升至-7.20 kgCO₂e/(m²·a)。

在当前电网碳强度下,经全生命周期核算,情景 3 与情景 7 研究区域的碳排放强度均优于新版《零碳建筑标准》规定的近零碳建筑限值。随着电网清洁化转型推进,建筑碳表现持续优化,排放量可进一步降低。最终残余排放需通过碳汇机制或增强光伏系统集成予以中和。

2.5.4 深圳——尺度扩大分析

选定区域如图 24 所示,包含 248 栋建筑,平均建筑高度为 35.50 米。该区域的总建筑面积为 5,445,756 平方米,总占地面积为 304,579 平方米。建筑类型多样,包括 141 栋高层板式建筑、25 栋高层塔楼、58 栋低层住宅、9 栋联排住宅及 15 栋商业建筑,所有商业建筑的占地面积均超过 3,000 平方米。这种高层建筑主导、建筑类型与高度的混合分布的城区格局,为尺度扩大研究提供了极具代表性的实证样本。

图 24: 深圳尺度扩大区域选址

图 25 展示了深圳尺度扩大区域的超级街区聚类情况。该尺度扩大区域位于 22.54696°, 114.08669°, 处于城市区域内。利用训练好的 k-均值模型对尺度扩大区域内的每个超级街区 进行了分类。该区域被划分为 51 个超级街区, 其中 7 个属于聚类 0, 36 个属于聚类 1, 还有 8 个为非住宅超级街区。

尺度扩大区域内大多数超级街区被归为聚类 1, 表明大部分建筑具有较高的密度、较低的体形系数以及较高的传热系数, 这反映出建筑围护结构性能较差。另一方面, 有 8 个超级街区被归类为非住宅区, 这些区域不含住宅建筑, 因此在碳排放预测中被排除。聚类 0 的超级街区则表现出较低的密度、较高的体形系数和较低的传热系数, 代表一种更为分散的城市形态且围护结构性能相对较好。

图 25: 尺度扩大后的深圳超级街区聚类

尺度扩大区域的总体平均碳排放量按平方米计算,结果列于表 16 中。该尺度扩大区域的空间调节和生活热水系统基线排放为 $18.03 \, \text{kgCO}_2\text{e}/(\text{m}^2\cdot\text{a})$ 。通过改善建筑围护结构和遮阳(情景 1),碳排放量下降了 20%,降至 $14.44 \, \text{kgCO}_2\text{e}/(\text{m}^2\cdot\text{a})$ 。情景 2 引入光伏和热泵技术,实现了这些系统的净负排放。情景 3 中采取的综合措施进一步将排放降低至 $-3.71 \, \text{kgCO}_2\text{e}/(\text{m}^2\cdot\text{a})$ 。

表 16: 深圳放大区碳排放量 (kgCO₂e/(m²·a))

	基线	情景 1	情景 2	情景 3	情景 4	情景 5	情景 6	情景7
暖通空调与生活热水系统	18.03	14.44	-0.15	-3.71	23.30	18.36	4.20	-0.80
全技术措施	36.39	32.8	18.21	14.65	41.66	36.72	22.56	17.56
全技术措施+电网 脱碳 25%	29.02	26.33	13.58	10.89	32.93	29.26	16.86	13.08
全技术措施+电网 脱碳 50%	21.71	19.92	9.03	7.23	24.32	21.84	11.21	8.73

全技术措施+电网 10.11 9.71 1.80 1.41 10.51 10.01 2.20 1.71 脱碳 90%

作为一个以制冷为主导且气候炎热的地区,深圳在全球变暖的影响下,制冷负荷显著增加,导致放大区的碳排放大幅上升。在基线情景下,空间调节和热水系统的碳排放从 18.03增加到 23.30 kgCO₂e/(m²·a) (+29.2%)。在采取被动措施(情景 1)后,这一增长有所缓解,碳排放升至 18.36 kgCO₂e/(m²·a) (较原始基线增加 27.1%)。虽然情景 6 失去了负碳排放状态,碳排放升至 4.20 kgCO₂e/(m²·a),但情景 7 仍保持接近中性的碳排放水平,为-0.80 kgCO₂e/(m²·a)。

电网的脱碳同样有助于扩大区实现低于零碳建筑标准中定义的近零碳排放阈值。随着电网碳强度的进一步降低,碳排放显著减少,在情景 3 中实现了 90%的减排,碳排放降至 1.41 kgCO₂e/(m^2 ·a)。

3 结论

本研究验证了基于超级街区的尺度扩大方法可有效量化中国即将发布的零碳标准实施效果的假设。工作包E和F的结果表明,该方法能快速预测基准排放量,并评估不同减排路径下的排放变化。通过在四个气候区典型区域的多情景测试,该方案成功实现了城市尺度建筑碳排放现状评估与减排潜力量化,同时证明结果精度高度依赖数据的完整性与可得性。

针对项目初期提出的问题, 研究得出以下结论:

- 实现零碳标准: 在电网碳强度为 0.6835 kgCO₂e/kWh 的条件下,只有低层建筑且屋 顶光伏覆盖率较高时才能达到零碳标准。对于其他所有类型的建筑,实现该标准的前 提是电网必须实现脱碳,因为仅家用电器的用电产生的碳排放往往就已经超过了标准 设定的零排放阈值。
- 评估现有住宅建筑的能源性能: 现有建筑存量的碳排放强度在单一建筑层面(工作包 E)和超级街区层面(工作包 F)均进行了模拟。结果表明,现有建筑存量普遍未能达到新零碳建筑标准中定义的近零排放阈值。此外,研究中还展示了针对不同气候和建筑年代类别(共计 48 栋建筑)所检测的各建筑类型的基线性能。

在以供暖为主的地区(如北京、哈尔滨),由于冬季寒冷,建筑的供暖能耗较高。例如,建筑层面的基线模拟显示,北京和哈尔滨的建筑供暖负荷较大,碳排放分别在 31.3 至 74.2 kgCO₂e/(m²·a)和 37.1 至 79.4 kgCO₂e/(m²·a)之间。在以制冷为主的地区(如深圳),基线碳排放范围为 38.2 至 42.0 kgCO₂e/(m²·a)。在气候较为平衡的地区(如上海),建筑的供暖和制冷需求较为均衡,基线排放介于 45.0 至 59.3 kgCO₂e/(m²·a)之间。

总体来看,现有建筑的能源性能高度依赖于气候条件、建筑类型和施工标准。特别是联排住宅和低层住宅由于较高的体形系数,能源性能往往较高层建筑差。此外,建筑的年代也是影响建筑性能的重要因素,例如深圳的建筑存量相对较新,性能优于其他地区的老旧建筑存量。

量化零碳标准的影响: 随着中国相关部门正在制定的新型绩效导向零碳标准的实施, 既有建筑的净排放目标是实现净零排放, 甚至达到净负碳排放。该项目的主要贡献在于明确实现这一新零碳建筑标准所需的条件, 并基于基线数据估算其二氧化碳减排潜力及影响。基于北京(44.05 kgCO₂e/(m²·a))、哈尔滨(44.74 kgCO₂e/(m²·a))、上海(36.31 kgCO₂e/(m²·a))和深圳(36.39 kgCO₂e/(m²·a))这四个城市的尺度扩大区域的基线碳排放水平, 新标准实施将通过两个阶段实现净零目标: 首先将排放量降至近零碳建筑阈值, 继而通过碳抵消机制实现完全零排放。

利用当前电网碳排放强度,计算了每个 1 平方公里尺度扩大区域的总碳减排效益。 北京地区在方案 3 下的减排潜力为 68,100 吨二氧化碳当量/年,哈尔滨为 73,606 吨二氧化碳当量/年,上海为 73,296 吨二氧化碳当量/年,而深圳提升区显示出最高的 减排潜力,方案 3 的减排量达到 118,390 吨二氧化碳当量/年。

• 识别有效的改造策略: 在寒冷和严寒地区,改进围护结构可以显著提升建筑性能; 而在炎热气候地区,遮阳系统在减少制冷负荷方面起着关键作用。相比遮阳措施,围 护结构升级在炎热气候中的影响相对有限。此外,受全球变暖影响,深圳实现零排放 目标面临更大挑战,采用可再生能源措施对于减少碳排放、实现接近零排放或零排放 水平至关重要。总体而言,暖通空调系统的改进和光伏面板的增加在所有气候区均展 现出显著减排效果,尤其是在低层建筑和平均高度较低的尺度扩大区域中,更可实现 碳负排放水平。 总结来看,最有效的改造策略因气候区而异。在以供暖为主的地区如北京和哈尔滨,通过墙体、屋顶和地板的保温改造以及窗户升级,能显著减少供暖需求。暖通空调系统能效提升,特别是从燃气供热系统转向空气源热泵的技术转型,在当前中国电网碳排放因子较高的条件下,仍然能够实现显著的减排效果。此外,在太阳能资源充足的地区,光伏系统的集成进一步减少排放。在以制冷为主的地区如深圳,被动措施如遮阳系统对于降低制冷负荷至关重要。升级为更高效的热泵制冷系统并结合光伏面板是实现排放目标的关键,而围护结构改进虽不如供暖区明显,但仍有助于整体节能。在气候较为平衡的地区如上海,结合围护结构升级、暖通空调改进和光伏的综合策略最为有效,因为供暖和制冷需求均需考虑。

总体而言,最具影响力的策略是将被动措施(如保温、遮阳)与主动系统(如热泵、 光伏面板)结合,针对各地区具体气候条件量身定制。

- 模拟尺度比较: 研究表明,与单一建筑层面的分析相比,基于超级街区的分析通过 同时考虑遮阳以及其对供暖和制冷负荷及光伏产量的影响,能提供更为真实的能效评 估。此举进一步提高了规模化改造策略的可靠性,从而实现了更有效的规划与实施。
- 确定优先改造区域: 所提出的框架通过三个简单参数——密度、整体体形系数和整体传热系数,有效地对大型城市区域内的超级街区进行分类。这些参数使得区域能够轻松划分为不同的聚类,从而确定该区域当前或基线的碳排放水平。该框架识别出碳排放较高的超级街区,特别是那些以较老的低层建筑或隔热性能较差的建筑为主的区域,作为优先改造对象。此外,由于建筑布局效率低,导致能耗较高,低密度且体形系数较高的超级街区也被标记为需重点干预的区域。

4 展望

尽管本项目已取得一定进展,但在中国建筑性能分析的背景下,仍有一些方面有待改进和拓展:

数据可得性与精度: 建筑面积、超级街区以及建筑年代等数据的可得性有限,加之高度数据精度较低,限制了该框架的全部潜力。若能得到中国相关部门的支持,并获取高质量的数据,该框架将有望在更大范围内进行测试,并实现更高的准确性。

- **建筑类型:** 本研究仅聚焦于住宅建筑。然而,商业建筑(如办公楼)的能耗通常显著更高,应在未来的分析中纳入考虑,以更全面地了解建筑的能源性能和运营碳排放情况。
- 光伏集成: 当前研究仅考虑了住宅建筑屋顶的光伏板安装。针对未来研究,尤其是高层建筑开发项目,需探索将光伏板集成于建筑立面的技术路径,以实现净零甚至负碳排放目标。现有建筑幕墙改造中采用薄膜光伏技术,亦可成为降低运行阶段碳排放的有效方案。
- 电气化与能源来源:本研究中的情景分析将建筑电气化作为减少碳排放的一种策略。然而,中国在电力生产中仍大量依赖化石燃料,导致电网的碳排放强度(kgCO₂e/kWh)目前约为天然气的三倍,这对住宅建筑的整体碳排放表现产生了负面影响。未来的研究应考虑全国范围内能源结构的变化,以及可再生能源在降低碳排放中的作用。为了实现零碳排放目标,淘汰化石燃料势在必行,而随着更多可再生能源发电方式的接入,电力供应将逐步实现脱碳。要实现建筑领域的零碳排放,电力行业的强力脱碳是不可或缺的前提条件。
- 全生命周期碳排放: 本研究聚焦于依据中国新版国家零碳排放标准所定义的门槛,减少建筑运营阶段的碳排放。然而,为实现建筑行业的全面脱碳目标,建筑的隐含碳排放(即材料生产、运输、建造等过程中的碳排放)与运营碳排放同样重要。若从整体碳排放的视角出发,必须将建筑的全生命周期碳排放纳入考虑。这将有助于更合理地制定干预措施,例如: 在"建筑翻新"与"拆除重建"之间进行权衡,或在"增加围护结构保温层厚度"与"提高暖通空调系统效率"之间做出更加平衡的决策。
- 净零能耗/排放视角: 在本项目中所采用的净零能耗假设,在建筑能耗分析中是一种简化处理。该假设认为,诸如光伏等可再生电力的集成,其年发电量可以按比例等量减少碳排放。因此,建筑层面无法自用的多余电力将会回售给电网,并替代其他发电能力。这一假设在电网中可再生能源占比较低时是合理的。然而当可再生能源发电量大幅提升(如夏季用电高峰时段出现电力过剩),则需对模型进行修正。

5 已发表成果及学术传播

Yigit, S., Mahecha Zambrano, J., & Baldini, L. (2025)。一种基于 GIS 和自下而上模拟的框架,

用于评估零碳建筑标准在实现低碳目标中的作用:中国案例研究的启示。2025 年第三届国际建筑、能源、环境与可持续发展会议(CEES 2025),意大利巴里, 2025 年 6 月 11 日至 13 日。

6 参考文献

An, J., Wu, Y., Gui, C., & Yan, D. (2023). Chinese prototype building models for simulating the energy performance of the nationwide building stock. *Building Simulation*, *16*(8), 1559–1582. https://doi.org/10.1007/s12273-023-1058-5

Braun, M., Stetz, T., Bründlinger, R., Mayr, C., Ogimoto, K., Hatta, H., Kobayashi, H., Kroposki, B., Mather, B., Coddington, M., Lynn, K., Graditi, G., Woyte, A., & MacGill, I. (2012). Is the distribution grid ready to accept large-scale photovoltaic deployment? State of the art, progress, and future prospects. *Progress in Photovoltaics: Research and Applications*, *20*(6), 681–697. https://doi.org/10.1002/pip.1204

Dai, B., Cao, Y., Liu, S., Ji, Y., Sun, Z., Xu, T., Zhang, P., & Nian, V. (2022). Annual energetic evaluation of multi-stage dedicated mechanical subcooling carbon dioxide supermarket refrigeration system in different climate regions of China using genetic algorithm. *Journal of Cleaner Production*, 333, 130119. https://doi.org/10.1016/j.jclepro.2021.130119

Deng, Z., Javanroodi, K., Nik, V. M., & Chen, Y. (2023). Using urban building energy modeling to quantify the energy performance of residential buildings under climate change. *Building Simulation*, *16*(9), 1629–1643. https://doi.org/10.1007/s12273-023-1032-2

Eggimann, S., Vulic, N., Rüdisüli, M., Mutschler, R., Orehounig, K., & Sulzer, M. (2022).

Spatiotemporal upscaling errors of building stock clustering for energy demand simulation. *Energy and Buildings*, *258*, 111844. https://doi.org/10.1016/j.enbuild.2022.111844

Eom, J., Clarke, L., Kim, S. H., Kyle, P., & Patel, P. (2012). China's building energy demand: Long-term implications from a detailed assessment. *Energy*, *46*(1), 405–419. https://doi.org/10.1016/j.energy.2012.08.009

Esch, T., Brzoska, E., Dech, S., Leutner, B., Palacios-Lopez, D., Metz-Marconcini, A., Marconcini, M., Roth, A., & Zeidler, J. (2022). World Settlement Footprint 3D - A first three-dimensional survey of the global building stock. *Remote Sensing of Environment*, *270*, 112877. https://doi.org/10.1016/j.rse.2021.112877

Gan, Y., El-Houjeiri, H. M., Badahdah, A., Lu, Z., Cai, H., Przesmitzki, S., & Wang, M. (2020). Carbon footprint of global natural gas supplies to China. *Nature Communications*, *11*(1), 1–9. Geng, J., Wang, J., Huang, J., Zhou, D., Bai, J., Wang, J., Zhang, H., Duan, H., & Zhang, W. (2022). Quantification of the carbon emission of urban residential buildings: The case of the Greater Bay Area cities in China. *Environmental Impact Assessment Review*, *95*, 106775. https://doi.org/10.1016/j.eiar.2022.106775

Geofabrik. (2024, January 15). *Download OpenStreetMap data for this region: China*. Geofabrik. https://download.geofabrik.de/asia/china.html

Güneralp, B., & Seto, K. C. (2008). Environmental impacts of urban growth from an integrated dynamic perspective: A case study of Shenzhen, South China. *Global Environmental Change*, 18(4), 720–735. https://doi.org/10.1016/j.gloenvcha.2008.07.004

Guo, S., Yan, D., Hu, S., & Zhang, Y. (2021). Modelling building energy consumption in China under different future scenarios. *Energy*, *214*, 119063. https://doi.org/10.1016/j.energy.2020.119063

Housing, M. of, & China (MoHURD), U.-R. D. of P. (2019). *Technical Standard for Nearly Zero Energy Buildings*. China Building Industry Press.

Huang, B., Xing, K., Ness, D., Liao, L., Huang, K., Xie, P., & Huang, J. (2022). Rethinking carbon–neutral built environment: Urban dynamics and scenario analysis. *Energy and Buildings*, *255*, 111672. https://doi.org/10.1016/j.enbuild.2021.111672

Ikotun, A. M., Ezugwu, A. E., Abualigah, L., Abuhaija, B., & Heming, J. (2023). K-means clustering algorithms: A comprehensive review, variants analysis, and advances in the era of big data. *Information Sciences*, *622*, 178–210. https://doi.org/10.1016/j.ins.2022.11.139

Johnson, J., Brazier, C., & Lam, T. (2022). *The China Lab Guide to Megablock Urbanisms*. Actar D, Inc.

Keirstead, J., Jennings, M., & Sivakumar, A. (2012). A review of urban energy system models: Approaches, challenges and opportunities. *Renewable and Sustainable Energy Reviews*, *16*(6), 3847–3866. https://doi.org/10.1016/j.rser.2012.02.047

Li, D. H. W., & Wong, S. L. (2007). Daylighting and energy implications due to shading effects from nearby buildings. *Applied Energy*, *84*(12), 1199–1209.

https://doi.org/10.1016/j.apenergy.2007.04.005

Liu, C., Sun, C., Li, G., Yang, W., & Wang, F. (2023). Numerical Simulation Analyses on Envelope Structures of Economic Passive Buildings in Severe Cold Region. *Buildings*, *13*(4), 1098. https://doi.org/10.3390/buildings13041098

Liu, Z., Liu, Y., He, B.-J., Xu, W., Jin, G., & Zhang, X. (2019). Application and suitability analysis of the key technologies in nearly zero energy buildings in China. *Renewable and Sustainable Energy Reviews*, *101*, 329–345. https://doi.org/10.1016/j.rser.2018.11.023

Long, Y., Li, P., & Hou, J. (2019). Three-dimensional urban form at the street block level for major cities in China. *Shanghai Urban Planning Review*, 3(3), 10–15.

Ma, M., Ma, X., Cai, W., & Cai, W. (2020). Low carbon roadmap of residential building sector in China: Historical mitigation and prospective peak. *Applied Energy*, 273, 115247. https://doi.org/10.1016/j.apenergy.2020.115247

Ma, X., Wang, C., Dong, B., Gu, G., Chen, R., Li, Y., Zou, H., Zhang, W., & Li, Q. (2019). Carbon emissions from energy consumption in China: Its measurement and driving factors. *Science of The Total Environment*, *648*, 1411–1420. https://doi.org/10.1016/j.scitotenv.2018.08.183

MoHURD. (202X). Technical standards for zero carbon buildings.

Ng, M. K. (2002). Sustainable Urban Development Issues in Chinese Transitional Cities: Hong Kong and Shenzhen. *International Planning Studies*, 7(1), 7–36. https://doi.org/10.1080/13563470220112580

Opel, O., Strodel, N., Werner, K., Geffken, J., Tribel, A., & Ruck, W. (2017). Climate-neutral and sustainable campus Leuphana University of Lueneburg. *Energy*, *141*, 2628–2639.

Orehounig, K., Fierz, L., Allan, J., Eggimann, S., Vulic, N., & Bojarski, A. (2022). CESAR-P: A dynamic urban building energy simulationtool. *Journal of Open Source Software*, 7(78), 4261. https://doi.org/10.21105/joss.04261

Pan, H., Zhuang, M., Geng, Y., Wu, F., & Dong, H. (2019). Emergy-based ecological footprint analysis for a mega-city: The dynamic changes of Shanghai. *Journal of Cleaner Production*, *210*, 552–562. https://doi.org/10.1016/j.jclepro.2018.11.064

Shea, R. P., Worsham, M. O., Chiasson, A. D., Kelly Kissock, J., & McCall, B. J. (2020). A lifecycle cost analysis of transitioning to a fully-electrified, renewably powered, and carbon-neutral campus at the University of Dayton. *Sustainable Energy Technologies and Assessments*, *37*, 100576. https://doi.org/10.1016/j.seta.2019.100576

Su, C., Madani, H., & Palm, B. (2018). Heating solutions for residential buildings in China: Current status and future outlook. *Energy Conversion and Management*, *177*, 493–510. https://doi.org/10.1016/j.enconman.2018.10.005

Valencia, A., Hossain, Md. U., & Chang, N.-B. (2022). Building energy retrofit simulation for exploring decarbonization pathways in a community-scale food-energy-water-waste nexus. *Sustainable Cities and Society*, 87, 104173. https://doi.org/10.1016/j.scs.2022.104173

Venkatesh, A., Jaramillo, P., Griffin, W. M., & Matthews, H. S. (2011). Uncertainty in life cycle greenhouse gas emissions from United States natural gas end-uses and its effects on policy. *Environmental Science & Technology*, *45*(19), 8182–8189.

Wang, H., Wu, H., Ding, Y., Feng, J., & Wang, S. (2015). Feasibility and optimization of aerogel glazing system for building energy efficiency in different climates. *International Journal of Low-Carbon Technologies*, *10*(4), 412–419. https://doi.org/10.1093/ijlct/ctu010

Wang, J., Huang, Y., Teng, Y., Yu, B., Wang, J., Zhang, H., & Duan, H. (2021). Can buildings sector achieve the carbon mitigation ambitious goal: Case study for a low-carbon demonstration

city in China? Environmental Impact Assessment Review, 90, 106633.

https://doi.org/10.1016/j.eiar.2021.106633

Wiryadinata, S., Morejohn, J., & Kornbluth, K. (2019). Pathways to carbon neutral energy systems at the University of California, Davis. *Renewable Energy*, *130*, 853–866.

https://doi.org/10.1016/j.renene.2018.06.100

Yang, X., Zhang, S., & Xu, W. (2019). Impact of zero energy buildings on medium-to-long term building energy consumption in China. *Energy Policy*, *129*, 574–586.

https://doi.org/10.1016/j.enpol.2019.02.025

Yu, S., Eom, J., Zhou, Y., Evans, M., & Clarke, L. (2014). Scenarios of building energy demand for China with a detailed regional representation. *Energy*, *67*, 284–297.

https://doi.org/10.1016/j.energy.2013.12.072

Zhang, L., Xia, J., Thorsen, J. E., Gudmundsson, O., Li, H., & Svendsen, S. (2016). Technical, economic and environmental investigation of using district heating to prepare domestic hot water in Chinese multi-storey buildings. *Energy*, *116*, 281–292. https://doi.org/10.1016/j.energy.2016.09.019

Zhang, Q., Qiao, K., Hu, C., Su, P., Cheng, O., Yan, N., & Yan, L. (2024). Study on life-cycle carbon emission factors of electricity in China. *International Journal of Low-Carbon Technologies*, 19, 2287–2298. https://doi.org/10.1093/ijlct/ctae181

Zhang, S.-C., Yang, X.-Y., Xu, W., & Fu, Y.-J. (2021). Contribution of nearly-zero energy buildings standards enforcement to achieve carbon neutral in urban area by 2060. *Advances in Climate Change Research*, *12*(5), 734–743. https://doi.org/10.1016/j.accre.2021.07.004

Zheng, G., & Bu, W. (2018). Review of Heating Methods for Rural Houses in China. *Energies*, 11(12), 3402. https://doi.org/10.3390/en11123402

Zheng, H., Zhang, R., Yin, X., & Wu, J. (2025). Unused housing in urban China and its carbon emission impact. *Nature Communications*, *16*(1), 1985. https://doi.org/10.1038/s41467-025-57217-

Zhou, S., & Zhou, C. (2021). Evaluation of China's low-carbon city pilot policy: Evidence from 210 prefecture-level cities. *PLOS ONE*, *16*(10), e0258405.

https://doi.org/10.1371/journal.pone.0258405

